Подстановки, перестановки
Подстановки, перестановки
Теорема 5.0.4. Множество S(U) всех биекций

,
, обладает следующими свойствами:- операция произведения ассоциативна ( h(gf)=(hg)f для всех
), - нейтральным элементом для этой операции является тождественное отображение 1U ( 1Uf=f=f1U для всех
), - для всякой биекции
существует обратный элемент - биекция g=f-1 ( fg=1U=gf ).
(Другими словами, S(U) - группа относительно операции произведения отображений; S(U) - подгруппа моноида T(U):
.)
Доказательство. следует из теоремы 1.6.4 и леммы 1.8.4.
Биекции
множества U часто называются подстановками . Наиболее важный для нас случай U={1,2,...,n}, в этом случае группу Sn = S({1,2,...,n}) называют группой подстановок множества {1,2,...,n} из n элементов (иногда называемой симметрической группой).
Запись подстановок. Перестановки
Если
- подстановка, то рассмотрим ее каноническую запись

, при этом только по одному разу. Такие строчки элементов (i1,...,in),
, где каждый элемент i_j,
, встречается один и только один раз, называются перестановками элементов 1,2,...,n .Лемма 5.1.1. Число всех перестановок (i1,...,in) из n элементов равно
.
Доказательство. Для i1 имеем n возможностей. При выбранном i1 для i2 имеем (n-1) возможность. Таким образом, число различных перестановок равно
!.
Лемма 5.1.2. Число различных подстановок множества {1,2,...,n} равно n! (т. е. | S_n|=n!).
Доказательство. Для
рассмотрим каноническую запись

Во многих случаях удобно рассматривать записи подстановки
, располагая в верхней строчке произвольную перестановку (i1,i2,...,in):


Пример 5.1.3
- Для тождественной подстановки в S2 имеемДля биекции

, f(1)=2, f(2)=1, имеем
- Еслито


- Так как
, тоВ частности,

- Обозначим через (i1 i2... ir) цикл длины r в группе подстановок Sn: подстановку, переводящую ik в ik+1 для
, ir в i1, и оставляющую все элементы из {1,2,...,n}, отличные от i1,...,ir, на месте. Тогда в S3 имеем шесть подстановок:При этом в Sn для
имеемследовательно, группа S3 и любая группа Sn при
некоммутативны. Так как S1={e} и S2={e, (1 2)} - коммутативные группы, то получаем, что группа Sn коммутативна тогда и только тогда, когда n=1 или n=2.