Добрый день можно поинтересоваться где брать литературу предложенную в курсе ?Большинство книг я не могу найти в известных источниках |
Машинные модели логических схем и управление процессом моделирования
Внутренние (машинные) модели схем
После ввода внешнего описания ДУ в компьютер, оно транслируется во внутреннее представление устройства, которое непосредственно используется в процессе логического моделирования. Существуют две основные формы (модели) внутреннего представления ДУ – компилятивная и интерпретативная. При компилятивной модели внешнее описание ДУ в виде структурной модели (схемы) или функциональной с использованием ЯРП транслируется в программу на некотором языке программирования (обычно ассемблере или С), которая непосредственно выполняет процесс моделирования. При интерпретативной модели внешнее описание транслируется в систему связанных таблиц, которые далее используются универсальной программой моделирования.
Компилятивная модель
В компилятивном методе моделирования описание схемы транслируется в последовательность операторов языка программирования или машинных инструкций. Например, синхронная последовательностная схема, представленная на рис.5.1 может быть транслирована в следующую программу, представленную ниже в листинге "Компилятивная модель".
Алгоритм компилятивного моделирования [39] приведен в виде псевдокода в листинге "Компилятивное моделирование". Следует обратить внимание на то, что при этом необходимо предварительно ранжировать схему по уровням. Основным преимуществом компилятивного метода моделирования является его высокое быстродействие. К недостаткам следует отнести то, что модель при изменении схемы (в процессе проектирования) каждый раз должна компилироваться заново. Здесь, как правило, используется сквозное (а не событийное ) моделирование, при котором на каждой итерации значение каждого логического элемента пересчитывается заново.
Компилятивная модель
Кроме этого, необходимо предварительно выполнить обрыв обратных связей для последовательностных схем (для этого разработаны соответствующие алгоритмы). Но основной проблемой этого метода является учет временных задержек логических элементов. Поэтому данный метод, в основном, применяется при моделировании комбинационных и синхронных последовательностных схем. При этом, как правило, проверяется только логика, а не временные соотношения.
Интерпретативная модель
В интерпретативном методе моделирования внешнее описание схемы транслируется в систему связанных таблиц, которая далее непосредственно используется в процессе моделирования. При этом каждой схеме соответствует своя система таблиц, а сама программа моделирования является универсальной. Например, на рис.2.20 приведены таблицы, представляющие схему S27 рис.2.9. Модель состоит из трех связанных между собой таблиц: - таблица типов элементов, - таблица элементов, - таблица контактов. Каждая строка таблицы соответствует элементу схемы и содержит следующую информацию: имя элемента (столбец ); ссылка на таблицу типов (); ссылка на таблицу контактов (), указывающая начало зоны контактов данного элемента.
Компилятивное моделирование
В таблице каждая строка содержит справочную информацию об элементе данного типа: число входов (), число выходов (), число портов (), число переменных состояний (), величина задержки () ,тип функции () и т.п.
Таблица содержит информацию о контактах схемы. Каждая строка этой таблицы соответствует контакту некоторого элемента. Более того, в ней каждому элементу отведена своя зона контактов, начинающаяся со строки, указанной в таблицы элементов. В начале зоны идут выходные контакты, а затем входные. Входы схемы представляются как элементы, имеющие только выходные контакты, а выходы схемы имеют только входные контакты. Столбец содержит ссылку на таблицу элементов. В столбце поразрядно записываются различные признаки, необходимые в процессе моделирования и генерации тестов. Столбец содержит кодированные значения сигналов в многозначном алфавите. Столбец определяет связи между контактами. Из таблицы 5.1 видно, что контакты, образующие один узел в схеме (обычно это один выходной и несколько входных контактов), связаны между собой в кольцевой список. Такая структура данных п озволяет эффективно продвигаться от входов к выходам схемы и в противоположном направлении. Информационная избыточность (значения сигналов хранятся для нескольких контактов, образующих один узел) позволяет уменьшить число пересылок при подготовке элемента к обработке и существенно ускоряет процесс моделирования. Следует отметить, что первые строки во всех таблицах соответствуют фиктивным элементам, представляющим константы , которые присутствуют во всех схемах независимо от того, используются они в данной схеме или нет. Эти элементы используются, например, для представления постоянных уровней напряжения или , подаваемых на некоторые элементы.