Московский государственный университет имени М.В.Ломоносова
Опубликован: 15.03.2007 | Доступ: свободный | Студентов: 611 / 26 | Оценка: 5.00 / 4.50 | Длительность: 19:30:00
Специальности: Программист
Введение 1:

Предисловие

Введение 1: 123 || Лекция 1 >

В настоящее время существует несколько подходов к проблеме реализации квантового компьютера.

  1. Отдельные атомы или ионы. Это первая и наиболее хорошо разработанная идея, она существует в нескольких вариантах. Для представления квантового бита можно использовать как обычные электронные уровни, так и уровни тонкой и сверхтонкой структуры. Имеется экспериментальная техника, позволяющая удерживать отдельный ион или атом в ловушке из постоянного магнитного или переменного электрического поля в течение длительного времени (порядка 1 часа). Ион можно "охладить" (т.е. погасить колебательное движение) при помощи лазерного луча. Подбирая длительность и частоту лазерных импульсов, можно приготовить произвольную суперпозицию основного и возбужденного состояний. Таким образом, управлять отдельным ионом достаточно легко. В ловушку можно также поместить два или большее число ионов на расстоянии несколько микрон друг от друга и управлять каждым из них в отдельности. Однако организовать взаимодействие между ионами достаточно трудно. Для этой цели предложено использовать коллективные колебательные моды ионов (обычные механические колебания с частотой в несколько мегагерц). Другой способ (для нейтральных атомов): поместить атомы в отдельные электромагнитные резонаторы, связанные друг с другом (пока непонятно, как это реализовать технически). Наконец, третий способ: при помощи нескольких лазерных лучей можно создать периодический потенциал ("оптическую решетку"), удерживающий невозбужденные атомы. При этом возможна ситуация, когда возбужденные атомы могут свободно двигаться. Таким образом, возбуждая на короткое время один из атомов, мы заставляем его взаимодействовать с соседями. Это направление экспериментальной физики сейчас быстро развивается и, по-видимому, имеет большие перспективы.

  2. Ядерный магнитный резонанс. В молекуле с несколькими различными ядерными спинами произвольное унитарное преобразование можно реализовать при помощи последовательности импульсов магнитного поля. Это было проверено экспериментально при комнатной температуре. Однако для приготовления начального состояния необходима температура < 10^{-3} K. Помимо трудностей с охлаждением, при такой температуре возрастают нежелательные взаимодействия молекул друг с другом. Кроме того, непонятно, как избирательно воздействовать на данный спин, если в молекуле есть несколько одинаковых спинов.

  3. Системы сверхпроводящих гранул. При сверхнизких температурах единственной степенью свободы микроскопической сверхпроводящей гранулы (диаметром в несколько сотен ангстрем) является ее заряд. Он может изменяться на величину, кратную двум зарядам электрона (поскольку электроны в сверхпроводнике связаны в пары). Меняя внешний электрический потенциал, можно добиться такой ситуации, когда два зарядовых состояния будут иметь почти одинаковую энергию. Эти два состояния можно использовать в качестве базисных состояний квантового бита. Гранулы взаимодействуют между собой посредством джозефсоновских контактов и взаимной электрической емкости. Этим взаимодействием можно управлять. Основная трудность состоит в том, что нужно управлять каждой гранулой в отдельности, причем с высокой точностью. По-видимому, этот подход перспективен, но для его реализации потребуется создание новой технологии.

  4. Анионы. Анионы — это особые возбуждения в двумерных квантовых системах, в частности, в двумерной электронной жидкости в магнитном поле. Один из авторов (А.К.) считает этот подход наиболее интересным (поскольку он же его и придумал [32]), поэтому опишем его более подробно.

    Основной проблемой при создании квантового компьютера является необходимость реализации унитарных преобразований с точностью \delta<\delta_0\sim 10^{-2}\div10^{-6}. Для этого, как правило, требуется контролировать параметры системы с еще большей точностью. Однако можно представить ситуацию, когда высокая точность достигается автоматически, т.е. исправление ошибок происходит на физическом уровне. Примером являются двумерные системы с анионными возбуждениями.

    Все частицы в трехмерном пространстве являются либо бозонами, либо фермионами. Волновая функция бозонов не меняется при перестановке двух частиц, а волновая функция фермионов умножается на -1. В любом случае при возвращении каждой из частиц на прежнее место состояние системы не меняется. В двумерных системах возможно более сложное поведение. Прежде всего заметим, что речь пойдет не об элементарных частицах типа электрона, а о возбуждениях, или дефектах в двумерной электронной жидкости. Такие возбуждения похожи на "настоящие" (т.е. элементарные) частицы, но обладают некоторыми необычными свойствами. Возбуждение может иметь дробный электрический заряд (например, 1/3 от заряда электрона). При движении одного возбуждения вокруг другого состояние окружающей их электронной жидкости меняется строго определенным образом, зависящим от типа возбуждений и от топологии пути, но не от конкретной траектории. В простейшем случае волновая функция домножается на число ( e^{2\pi i/3} для анионов в двумерной электронной жидкости в магнитном поле при факторе заполнения 1/3 ). Возбуждения с таким свойством называются абелевыми анионами. Другой пример абелевых анионов описан (на математическом языке) в разделе "Классические и квантовые коды" .

    Более интересны неабелевы анионы, которые пока не наблюдались экспериментально. (Теория предсказывает существование неабелевых анионов в двумерной электронной жидкости в магнитном поле при факторе заполнения 5/2.) При наличии нескольких неабелевых анионов состояние электронной жидкости является вырожденным, причем кратность вырождения экспоненциально зависит от числа анионов. Другими словами, существует не одно, а много состояний, которые могут образовывать произвольные квантовые суперпозиции. На такую суперпозицию нельзя никак воздействовать, не перемещая анионы, поэтому она идеально защищена от возмущений. Если обвести один анион вокруг другого, суперпозиция подвергнется определенному унитарному преобразованию. Это преобразование является абсолютно точным. (Ошибка может возникнуть, только если анион "вырвется у нас из рук" вследствие квантового туннелирования).

    На первый взгляд, проект с использованием анионов выглядит наименее реалистично. Прежде всего, абелевы анионы не годятся для квантовых вычислений, а неабелевы еще только предстоит найти в эксперименте. Для реализации квантового компьютера нужно контролировать каждую из частиц, которые будут двигаться на расстояниях порядка долей микрона друг от друга. Это чрезвычайно сложная техническая задача. Однако, с учетом высоких требований к точности, осуществить любой из перечисленных выше подходов ничуть не легче. Кроме того, идея топологического квантового вычисления, лежащая в основе подхода с анионами, может воплотиться каким-либо другим способом. Например, защищенная от возмущений квантовая степень свободы может возникнуть на конце "квантовой проволоки" (одномерного проводника с нечетным числом распространяющихся электронных мод, находящегося в контакте с трехмерным сверхповодником).

Итак, идея квантового компьютера выглядит столь же заманчиво, сколь нереалистично. Наверное, так же воспринимался проект обычного компьютера во времена Чарльза Бэббиджа, изобретение которого было реализовано лишь сто лет спустя. Будем надеяться, что в наше время научно-технический прогресс идет быстрее, поэтому не придется ждать так долго. Возможно, достаточно одной свежей идеи плюс несколько лет на разработку новой технологии \dots

Введение 1: 123 || Лекция 1 >