Лекция 10: Численные методы решения жестких систем обыкновенных дифференциальных уравнений
9.1. Явление жесткости. Предварительные сведения
Рассмотрим в качестве примера две задачи Коши для систем обыкновенных дифференциальных уравнений (ОДУ) [9.1], [9.2]:
с начальными данными u(0) = u0, v(0) = v0 ; здесь ; и линейную систему с постоянными коэффициентами
Решением первой задачи Коши являются функции
а второй -
u(t) = 4e- t - 3e- 1000t, v(t) = - 2e- t + 3e- 1000t.
В обоих случаях решение состоит из двух экспонент: быстро убывающей и относительно медленно изменяющейся. Отметим, что абсолютные величины собственных значений матриц рассматриваемых линейных систем ОДУ при их представлении в виде
( u — вектор - столбец, A — матрица с постоянными коэффициентами) существенно различаются. Так, в первом случае ; во втором: В обоих случаях имеем:
При моделировании физических процессов причина такой разницы в собственных числах заключена в существенно различных характерных временах процессов, описываемых системами ОДУ. Наиболее часто подобные системы встречаются при моделировании процессов в ядерных реакторах, при решении задач радиофизики, астрофизики, физики плазмы, биофизики, химической кинетики. Последние задачи часто могут быть записаны в виде [9.3]:
где uk — концентрации веществ, участвующих в химических реакциях, скорости протекания которых характеризуются коэффициентами В качестве примера приведем одну из систем химической кинетики, описывающую изменение концентрации трех веществ, участвующих в реакции для случая полного перемешивания [9.1].
Пример 1. Обозначим концентрации трех веществ, участвующих в реакции, через u1, u2 и u3, тогда
Участки решения, характеризующиеся быстрым и медленным его изменением, называются пограничным слоем и квазистационарным режимом, соответственно.
Трудности численного решения подобных систем ОДУ, получивших название жестких (определение жесткой системы приведено ниже), связаны с выбором шага интегрирования. Дело в том, что характерные времена исследуемых процессов могут различаться более чем в 1012 раз. Следовательно, если при численном решении системы
выбирать шаг из условия
то он будет соответствовать самому быстрому процессу. В данном случае затраты машинного времени для исследования самых медленных процессов будут неоправданно велики. По этой причине имеются следующие альтернативы в выборе подхода к численному решению рассматриваемых задач.
- Численно решать систему ОДУ с шагом
т.е. с учетом характерных времен всех процессов, описываемых данной системой.
- Решать систему ОДУ с различными шагами, соответствующими физическим процессам с существенно различными характерными временами. В этом случае необходимо задавать условия перехода к другому шагу интегрирования.
- "Пренебречь" быстропротекающими процессами и численно рассматривать лишь медленные, проводя интегрирование с шагом, превышающим характерные времена быстрых процессов. В этом случае придется конструировать численные методы, позволяющие проводить расчеты с шагом