Опубликован: 27.09.2006 | Уровень: специалист | Доступ: платный | ВУЗ: Нижегородский государственный университет им. Н.И.Лобачевского
Лекция 5:

Поиск в глубину

< Лекция 4 || Лекция 5: 123 || Лекция 6 >
Аннотация: Процедура поиска в глубину. DFS-дерево. Глубинная нумерация. Построение каркаса. Шарниры.

Процедура поиска в глубину

Поиск в глубину - вероятно, наиболее важная ввиду многочисленности приложений стратегия обхода графа. Идея этого метода - идти вперед в неисследованную область, пока это возможно, если же вокруг все исследовано, отступить на шаг назад и искать новые возможности для продвижения вперед. Метод поиска в глубину известен под разными названиями, например, "бэктрекинг", "поиск с возвращением".

Понятия новой, открытой, закрытой и активной вершин для поиска в глубину имеют такой же смысл, как и для поиска в ширину. Отметим, что всегда имеется не более чем одна активная вершина.

Обход начинается с посещения заданной стартовой вершины a, которая становится активной и единственной открытой вершиной. Затем выбирается инцидентное вершине a ребро (a,y) и посещается вершина y. Она становится открытой и активной. Заметим, что при поиске в ширину вершина a оставалась активной до тех пор, пока не были исследованы все инцидентные ей ребра. В дальнейшем, как и при поиске в ширину, каждый очередной шаг начинается с выбора активной вершины из множества открытых вершин. Если все ребра, инцидентные активной вершине x, уже исследованы, она превращается в закрытую. В противном случае выбирается одно из неисследованных ребер (x,y), это ребро исследуется. Если вершина y новая, то она посещается и превращается в открытую.

Главное отличие от поиска в ширину состоит в том, что при поиске в глубину в качестве активной выбирается та из открытых вершин, которая была посещена последней. Для реализации такого правила выбора наиболее удобной структурой хранения множества открытых вершин является стек: открываемые вершины складываются в стек в том порядке, в каком они открываются, а в качестве активной выбирается последняя вершина. Схематически это показано на рис. 5.1.


Рис. 5.1.

Обозначим стек для открытых вершин через S, остальные обозначения сохраняют тот же смысл, что и в предыдущем разделе. Через {\rm
top}(S) обозначается верхний элемент стека (т.е. последний элемент, добавленный к стеку). Тогда процедура обхода одной компоненты связности методом поиска в глубину со стартовой вершиной a может быть записана следующим образом (DFS - Depth First Search).

Procedure DFS(a)

  1. посетить вершину a
  2. a\Rightarrow S
  3. while S\ne
\varnothing do
  4. x :={\rm top}(S)
  5. if имеется неисследованное ребро (x,y)
  6. then исследовать ребро (x,y)
  7. if вершина y новая
  8. then посетить вершину y
  9. y\Rightarrow S
  10. else удалить x из S

Еще раз обратим внимание на основное отличие этой процедуры от аналогичной процедуры поиска в ширину. При поиске в ширину вершина, став активной, остается ею, пока не будет полностью исследована ее окрестность, после чего она становится закрытой. При поиске в глубину, если в окрестности активной вершины x обнаруживается новая вершина y, то y помещается в стек и при следующем повторении цикла while станет активной. При этом x остается в стеке и через какое-то время снова станет активной. Иначе говоря, ребра, инцидентные вершине x, будут исследованы не подряд, а с перерывами.

Алгоритм обхода всего графа - тот же, что и в случае поиска в ширину (алгоритм 1 "Поиск в ширину" ), только нужно очередь заменить стеком, а процедуру BFS - процедурой DFS.

Свойства 1 и 2 поиска в ширину, отмеченные в предыдущем разделе, сохраняются и для поиска в глубину. Остается верной и оценка трудоемкости O(m+n), но ее доказательство требует несколько иных рассуждений, так как каждая вершина теперь может становиться активной несколько раз. Однако каждое ребро рассматривается только два раза (один раз для каждой инцидентной ему вершины), поэтому в операторе if в строке 5 ветвь then (строки 6-9) повторяется O(m) раз. В этом же операторе ветвь else (строка 10) повторяется O(n) раз, так как каждая вершина может быть удалена из стека только один раз. В целом получается O(m+n), причем остаются справедливыми сделанные в "Поиск в ширину" замечания об условиях, при которых имеет место эта оценка.

< Лекция 4 || Лекция 5: 123 || Лекция 6 >
Татьяна Наумович
Татьяна Наумович

Скажите, пожалуйста, можно ли еще получить документ о прохождении курса ("Графы и алгоритмы", декабрь 2020) после предоставления всех дополнительных необходимых документов?
Или нужно проходить заново?

Петр Петров
Петр Петров

произведение графов К(2)*О(4) фактически 4 отдельных графа К(2)?

Михайло Бабин
Михайло Бабин
Украина
Madi Sam
Madi Sam
Казахстан, rwre, rtsgtr