Московский государственный университет путей сообщения
Опубликован: 01.06.2007 | Доступ: свободный | Студентов: 1903 / 101 | Оценка: 4.38 / 3.75 | Длительность: 22:59:00
ISBN: 978-5-9556-0094-9
Специальности: Программист
Лекция 15:

Основы "живого" моделирования

Нейросеть строится обученной. При ее построении и в процессе ее развития с добавлением новых рецепторов и нейронов выходного слоя, ответственных за реакцию, вводятся связи на основе эталонных ситуаций. Это означает, что возбуждение связываемых при этом рецепторов равно единице. Иначе говоря, в логическом описании создаваемой системы исходные высказывания имеют значение ИСТИНА. Переход от булевых переменных к действительным, к достоверности высказываний, порождает модель ассоциативного мышления.

Практически за эту достоверность можно принимать частоту появления или "удельный вес" определенного цвета (соответствующих пикселей) в анализируемом квадрате. Подавая значения достоверности на рецепторный слой, с помощью передаточной функции находим величины возбуждения нейронов выходного слоя. Эти величины служат параметрами запускаемых программ.

Рекомендуемая передаточная функция имеет вид

\begin{array}{l}
        V_{Вых} = \xi \left ( \sum_{\nu} \omega_{\nu} V_{\nu} – h \right ), \\
        \left(\xi (s) =
            \left \{
              \begin{array}{ll}
                s, & \mbox{при } s \ge 0 \\
                0, & \mbox{при } s < 0
              \end{array}
            \right
        \right )
      \end{array}.

Порог h целесообразно выбрать достаточно высоким, например h = 0,5, так, чтобы объект не выглядел слишком "нервным", возбуждаясь понапрасну из-за малой причины возбуждения.

Таким образом, "живое" моделирование — это экспериментальное направление, позволяющее проверить и осуществить все достижения на пути развития технологий искусственного интеллекта. Это реальный путь воплощения новых направлений в искусстве, в шоу-бизнесе, в учебной, игровой и развлекательной деятельности.

Вместе с тем, наряду с разработкой инструментария и постановкой задачи дальнейших исследований в области логических нейронных сетей , в их обучении и имитации дедуктивного и индуктивного мышления возникают сопутствующие задачи.

Прежде всего это задача оценки современных компьютерных возможностей реализации столь большого объема работ в реальном времени. Очевидно, что лишь высокопараллельная архитектура, подобная мозгу, может эффективно исполнять функции видеонейрокомпьютера.

Следует проанализировать эффективность применения современных суперкомпьютеров, таких, например, как Эльбрус-E2k.

Анализ приведенных выше математических построений говорит в пользу SPMD-архитектур, т.е. архитектур типа "одна программа — много потоков данных". Актуальна постановка задачи разработки специальной параллельной приставки к персональному компьютеру (рабочей станции) — видео-нейрокомпьютера, "врезанного" в современные популярные операционные системы. Наконец, широкое привлечение сетевых технологий позволит создавать значительные распределенные сюжеты с коллективным участием многих взаимно влияющих "живых" объектов.

Реализация трехмерной памяти , при которой моделируемые объекты оказываются воплощенными не с помощью своего математического образа, а пространственно, также ставит новые технические задачи. Одна из них заключается в отображении содержимого памяти в некоторой экранной трехмерной среде. Это явилось бы новым решением задачи формирования стереоизображений.

15.13. Реагирующие объекты для систем интеллектуального отображения

15.13.1. Постановка задачи

Управление сложными системами с возможным участием операторов и диспетчеров предъявляет высокие требования к динамическому отображению их состояния для оперативного анализа ситуации и принятия решений. Задача оператора значительно усложняется в случае территориальной разобщенности средств системы, превращаясь в задачу многоуровневого контроля и диагностики. Возникает необходимость интеллектуальной надстройки всей системы отображения, контроля и принятия решений, производящей оперативную первичную обработку многообразной регистрирующей, отображающей и управляющей информации для предварительного, грубого отображения происходящего процесса. Задачей такого предварительного, поверхностного отображения является выяснение того, протекает ли процесс в пределах нормы, грозит ли уход за эти пределы, а также установление факта и причин тревоги.

Отображение должно быть наглядным, доступным и понятным широкому кругу наблюдателей, бесспорным и образным, а также не должно требовать постоянных кропотливых усилий операторов. Важна и эстетическая составляющая.

Требование образности и эстетики, обеспечивающих наибольшее понимание, приводит к целесообразности использования реагирующих объектов — моделей живых существ или других "оживляемых" образов, по поведению которых можно судить о состоянии сложной системы.

Для такой предварительной, грубой оценки применимы принципы ситуационного управления [23]. Однако информацией для реагирующего объекта является чрезвычайно большое количество данных разнообразной природы и типов. Задача осуществления реакции становится трудно формализуемой. Ее решение возможно только с применением средств искусственного интеллекта. Множество зависимостей вида "если …, то …" в основе решения этой задачи приводит к выводу о целесообразности применения логических нейронных сетей.

Таким образом, на вход реагирующего объекта подается большое число разрозненных или связанных показателей состояния сложной системы, определяющих факторное пространство. Эти показатели, в соответствии с методикой, изложенной в "Методика построения системы принятия решений на основе логической нейронной сети" , разбиты по характеру влияния на значимые интервалы, отдельные объекты, дискретные значения или булевы переменные (вида "есть — нет"), позволяющие оценить достоверность значения каждого фактора, что может быть использовано для возбуждения рецепторного слоя нейросети. На основе накапливаемого опыта, экспертных оценок или теоретических исследований строится обученная, развиваемая в процессе эксплуатации, логическая нейронная сеть — основа поведения реагирующего объекта .

На данном этапе утверждения важности данного направления не следует брать на себя смелость заявления о самообучении, тем более — об автоматическом обобщении опыта, т.е. об имитации индуктивного мышления. Несомненно, это задачи будущего развития технологии применения реагирующих объектов .

Модели реагирующих объектов могут быть трех типов:

  • натурная модель, выполненная, в частности, в соответствии с известными технологиями робототехники или театра кукол;
  • компьютерная (электронная) модель, использующая графические технологии — двумерные и трехмерные;
  • компьютерная (электронная) модель на основе клип-технологий.

Все три типа моделей предполагают связь нейронов выходного слоя с соответствующими программами (процедурами) имитации реакции объектов на ситуацию по принципу ассоциативного мышления. При этом величина возбуждения нейрона выходного слоя служит основным параметром соответствующей программы, определяющим реакцию. Этим обеспечивается возможность совмещения различных реакций, дающих некоторую результирующую.

Натурная модель, ввиду значительного применения элементов механики, электротехники и других технологий, по-видимому, имеет ограниченное применение в сфере развлечений или при медленно изменяющихся факторах (реакция на прогноз погоды) и др.

Электронная графическая модель при кажущейся доступности технологий требует критического рассмотрения и развития достаточно разнообразных современных средств для реализации динамики их поведения, как реакции на входные сигналы. В этом случае решающую роль играет проблема управляемой анимации в реальном времени — проблема "живого" моделирования.

Клип-модель, предполагающая оперативное вторжение в развитие сюжета, базируется на хранении большого количества вариантов — клипов, что может вызвать проблемы памяти, а также проблемы временных и технических объемов разработки.

Тем не менее все возможности должны быть экспериментально исследованы на моделях.

Помимо актуальной задачи интеллектуального отображения в сложных управляющих системах, применение реагирующих объектов может быть значительно более широким. Это — системы развлекательные, игровые, демонстрационные, рекламные, медицинской и технической диагностики, контроля несанкционированного доступа и другие из сфер искусства, науки, техники, бизнеса.

Эльвира Герейханова
Эльвира Герейханова

Раньше это можно было зделать просто нажав на тест и посмотреть результаты а сейчас никак

Елена Лобынцева
Елена Лобынцева
Помогите разобраться как можно подобрать НС для распознавания внутренней области выпуклого многоугольника?