Московский государственный университет имени М.В.Ломоносова
Опубликован: 10.09.2007 | Доступ: свободный | Студентов: 3989 / 729 | Оценка: 4.33 / 3.93 | Длительность: 13:22:00
Тема: Математика
Специальности: Математик
Теги:
Лекция 7:
Единственность главного ступенчатого вида матрицы
Аннотация: В данной лекции речь идет о единственности главного ступенчатого вида матрицы. Приведены примеры ступенчатых матриц, рассмотрено понятие изоморфизма линейных пространств, доказана обратимость матрицы перехода. Также приведены доказательства основных теорем и предоставлены задачи для самостоятельного решения
Ключевые слова: линейная оболочка строк, доказательство, определение, матрица, отношение, изоморфизм, базис, пространство, запись, матрица перехода, умножение, поле, равенство, координаты, алгоритм
Единственность главного ступенчатого вида матрицы
Теорема 9.5.1. Пусть , B и C - ступенчатые матрицы, полученные из ненулевой матрицы A конечным числом элементарных преобразований строк 1-го, 2-го и 3-го типов. Тогда:
- системы строк {B1,...,Bm} матрицы B и {C1,...,Cm} матрицы C в линейном пространстве строк Kn линейно выражаются друг через друга (другими словами, линейные оболочки строк матриц A, B и C в K^n совпадают:
- числа r1 и r2 ненулевых строк в ступенчатых матрицах B и C соответственно совпадают (при этом ; другие интерпретации числа r=r(A) будут даны в теореме 9.16.1 о ранге матрицы);
- лидеры строк ступенчатых матриц B и C располагаются в одних и тех же столбцах;
- если B и C - главные ступенчатые виды ненулевой матрицы , то B=C.
- В силу замечания 9.4.5, в линейном пространстве строк Kn системы строк {A1,...,Am} матрицы A и {B1,...,Bm} матрицы B линейно выражаются друг через друга. Аналогично, системы строк {A1,...,Am} матрицы A и {C1,...,Cm} матрицы C также линейно выражаются друг через друга. Принимая во внимание транзитивность линейной выражаемости систем строк (см. следствие 9.4.2), получаем, что системы строк {B1,...,Bm} матрицы B и {C1,...,Cm} матрицы C линейно выражаются друг через друга. Следовательно,
- Так как ненулевые строки ступенчатой матрицы образуют максимально независимую подсистему строк, то из 1) следует, что r1=r2 (см. следствие 9.4.10), при этом
- Пусть лидеры r ненулевых строк B1,B2,...,Br ступенчатой матрицы B расположены в столбцах с номерами k1,k2,...,kr, k1<k2<...<kr, а лидеры r ненулевых строк C1,C2,...,Cr ступенчатой матрицы C расположены в столбцах с номерами l1,l2,...,lr, l1<l2<...<lr. Так как системы строк {B1,B1_2,...,Br}, {C1,C2,...,Cr} линейно выражаются друг через друга, то, в силу леммы 3.5.5 и следствия 3.5.6, k1=l1 ( ; ).
Продолжая этот процесс, убеждаемся в том, что .
- В 2) и 3) доказано, что число ненулевых строк r и номера столбцов l1,...,lr, , в которых находятся главные неизвестные главных ступенчатых видов B и C, определены однозначно. Таким образом, разбиения на главные и свободные неизвестные, определяемые ступенчатыми видами B и C, совпадают. Поскольку главные неизвестные однозначно выражаются через свободные (в эквивалентных однородных системах линейных уравнений с главными ступенчатыми матрицами B и C ), при этом главный ступенчатый вид определяется этим выражением однозначно (см. замечание 3.6.9, то B=C ).
Замечание 9.5.2 (матричное доказательство п. 4 теоремы о единственности главного ступенчатого вида). Для существуют такие обратимые матрицы (произведения матриц, соответствующих элементарным преобразованиям строк), что
Следовательно, Используя определение главного ступенчатого вида и переставляя столбцы матриц B и C, имеем:( 9.1) |