Опубликован: 26.10.2007 | Доступ: свободный | Студентов: 2354 / 787 | Оценка: 4.04 / 3.76 | Длительность: 17:47:00
ISBN: 978-5-94774-810-9
Лекция 10:

Кодирование с адаптивным предсказанием

< Лекция 9 || Лекция 10: 12345 || Лекция 11 >

Вокодер

Работа вокодера (voice coder) основана на анализе характерных особенностей человеческой речи. На рис. 10.5 показаны условно частотные характеристики речи как функция от времени.

Пример распределения энергии в частотных диапазонах

Рис. 10.5. Пример распределения энергии в частотных диапазонах

На рисунке изображены частотные полосы (от 0 до 1 КГц, от 1 КГц до 2 КГц и т. д.) и распределение энергии по ним при произнесении фразы.

Как видно из рисунка, энергия распределяется во времени только в некоторых частотных диапазонах и различается по величине. Отдельные пики энергии, возникающие в одном частотном диапазоне, называются фонемами.

Эта картина может изменяться в больших диапазонах, в зависимости от тембра голоса и особенностей произношения, но нам сейчас важно рассмотреть общие закономерности построения. На рисунке видно, что буквы отличаются не только частотным диапазоном, но и структурой. Для каждого звука характерны пики (резонансы) энергии в определенных частотных диапазонах и провалы в других. Частоты, на которых в данный момент возникают комбинации пиков (фонем), называются "частотами формант" или просто "формантами". Гласные и звонкие согласные звуки речи содержат обычно от трех до четырех формант. Эти свойства и иллюстрируются рис. 10.5. Изображенная "спектрограмма" представляет распределение энергии речи в виде функции времени и частоты. Горизонтальная ось представляет время, вертикальная — частоту, уровень энергии условно показан частью синусоиды. Периоды между сменами формант составляют от 10 до 30 мс. Изучение образцов речи показало, что в русском языке содержится 42 фонемы: это 6 гласных звуков и остальные согласные [10.5]. Чтобы закодировать их номера, достаточно 6 битов.

Человек в среднем произносит в секунду 10 звуков. То есть от центральной нервной системы к речевому аппарату сигналы передаются со скоростью 10 [log2 42] = 60 бит/с. Это вычисление порождает иллюзию, что речь имеет небольшой объем информации и может быть передана с небольшой скоростью. Однако если рассмотреть подробнее, как образуется звук, то можно обнаружить, что при передаче речи требуется передать больше информации. При разговоре грудная клетка сжимается и расширяется, поток воздуха проходит через трахею и гортань в полости глотки, рта и носа. Голосовой тракт простирается от голосовой щели (отверстие между голосовыми складками гортани) до губ и в процессе речи его форма меняется. Если произносятся звонкие звуки (гласные, носовые, звонкие согласные), называемые также вокализованными (voiced), голосовые складки в гортани смыкаются и размыкаются с частотой, которая называется частотой основного тона (pitch). Получается последовательность импульсов воздушного потока, которые возбуждают полости голосового тракта. В процессе разговора человек меняет геометрические размеры этих полостей, соответственно меняются и резонаторные частоты, "форманты".

При произнесении глухих невокализированных (unvoiced) звуков голосовые связки расслаблены. Проходя по суженному голосовому тракту, воздух создает турбулентный поток (завихрение), т.е. в полости рта и носа возбуждаются шумоподобные сигналы. Взрывные (смычные, stop) звуки получаются путем кратковременного выхлопа — полного перекрытия речевого тракта, нагнетания давления и внезапного открытия тракта. Взрывные звуки бывают звонкие (б, д, г) и глухие (п, т, к), т.е. могут образовываться с участием голосовых складок и без них. Таким образом, в терминах спектра сигналов, когда человек говорит, он производит спектрально­временную модуляцию широкополосного сигнала, генерируемого голосовыми складками и представляющего своего рода несущую. Полезная информация содержится только в интонации (изменении частоты основного тона) и в смене спектра с тонального на шумовой и наоборот.

Линейная модель речеобразования представляет речь как систему, состоящую из генератора возбуждения (генераторная функция) и линейной системы с медленно изменяющимися параметрами (фильтровая функция), которая им возбуждается. В такой модели не учитывается взаимное влияние голосовой щели и голосового тракта. Это не соответствует действительности, зато сильно упрощает анализ и синтез. Для экономичной передачи и хранения речи надо определить параметры генераторной и фильтровой функций. В генераторной функции изменяется частота и амплитуда основного тона (высота и громкость голоса) и происходит смена вида функции (основной тон или шум). У фильтровой функции происходит постоянное изменение коэффициента передачи, проявляющееся в изменении огибающей спектра.

Эта модель представляет речь человека, который "гудит" на одной частоте, периодически изменяя ее на другую и меняя громкость, а основная информация "добавляется" в "подтонах".

Рассматриваемые ранее принципы и реализующая их аппаратура были предназначены в первую очередь для воспроизведения формы входного сигнала на приеме как можно точнее в форму сигнала на выходе приемной стороны. Ниже рассмотрим принципы построения аппаратуры, которая моделирует человеческую речь, используя при этом методы цифрового кодирования. Они называются вокодеры (это слово получено объединением двух английских слов voice coderкодер речевого сигнала).

По принципу определения параметров фильтровой функции различают следующие типы вокодеров:

  • канальные (полосовые, channel);
  • формантные;
  • ортогональные;
  • вокодеры с линейным предсказанием (липредеры — с Линейным ПРЕдсказанием РЕчи).

Ранее вокодеры выполнялись только на основе аналоговой техники на протяжении всего разговорного тракта. Теперь наиболее распространена цифровая техника.

< Лекция 9 || Лекция 10: 12345 || Лекция 11 >
Павел Ковалёв
Павел Ковалёв
Кристина Руди
Кристина Руди