Донецкий национальный технический университет
Опубликован: 15.03.2007 | Доступ: свободный | Студентов: 5215 / 1564 | Оценка: 4.11 / 3.78 | Длительность: 12:32:00
Специальности: Математик
Лекция 1:

Математическое моделирование. Форма и принципы представления математических моделей

Лекция 1: 12 || Лекция 2 >

В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов

Фi (X,Y,Z,t)=0,

где X - вектор входных переменных, X=[x1,x2,x3, ... , xN]t,

Y - вектор выходных переменных, Y=[y1,y2,y3, ... , yN]t,

Z - вектор внешних воздействий, Z=[z1,z2,z3, ... , zN]t,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат ( математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель. Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

  1. аналитические;
  2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

  1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),
  2. аппроксимационные задачи (интерполяция, экстраполяция, численное интегрирование и дифференцирование),
  3. задачи оптимизации,
  4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование.

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

  1. детерминированные,
  2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

  1. непрерывные,
  2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

  1. статические,
  2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:

  1. изоморфные (одинаковые по форме),
  2. гомоморфные (разные по форме).

Модель называется изоморфной, если между нею и реальным объектом, процессом или системой существует полное поэлементное соответствие. Гомоморфной - если существует соответствие лишь между наиболее значительными составными частями объекта и модели.

В дальнейшем для краткого определения вида математической модели в приведенной классификации будем пользоваться следующими обозначениями:

Первая буква:

Д - детерминированная,

С - стохастическая.

Вторая буква:

Н - непрерывная,

Д - дискретная.

Третья буква:

А - аналитическая,

И - имитационная.

Согласно этим обозначениям, описанная в "лекции 2" , модель кривошипно-шатунного механизма (Рис. 2.1.) обозначается как модель вида ДНА (детерминированная, непрерывная, аналитическая), так как:

  1. Отсутствует (точнее не учитывается) влияние случайных процессов, т.е. модель детерминированная (Д).
  2. Информация и параметры - непрерывные, т.е. модель - непрерывная (Н),
  3. Функционирование модели кривошипно-шатунного механизма описано в виде нелинейных трансцендентных уравнений, т.е. модель - аналитическая (А)
Лекция 1: 12 || Лекция 2 >
Александр Никитин
Александр Никитин

Добрый день.

В расчете параметра Т4 xi суммируется с величиной h/2 ?

Елена Голяева
Елена Голяева
Алина Баландина
Алина Баландина
Россия, г. Саранск