Опубликован: 19.07.2006 | Доступ: свободный | Студентов: 7497 / 1266 | Оценка: 4.12 / 4.01 | Длительность: 13:31:00
Лекция 2:

Технология доступа к среде

FDDI

Библиографическая справка

Стандарт на "Волоконно-оптический интерфейс по распределенным данным" (FDDI) был выпущен ANSI X3Т9.5 (комитет по разработке стандартов) в середине 1980 гг. В этот период быстродействующие АРМ проектировщика уже начинали требовать максимального напряжения возможностей существующих локальных сетей (LAN) (в oсновном Ethernet и Token Ring). Возникла необходимость в новой LAN, которая могла бы легко поддерживать эти АРМ и их новые прикладные распределенные системы. Одновременно все большее значение уделяется проблеме надежности сети, т.к. администраторы систем начали переносить критические по назначению прикладные задачи из больших компьютеров в сети. FDDI была создана для того, чтобы удовлетворить эти потребности.

После завершения работы над FDDI, ANSI представила его на рассмотрение в ISO. ISO разработала международный вариант FDDI, который полностью совместим с вариантом стандарта, разработанным ANSI.

Хотя реализации FDDI сегодня не столь распространены, как Ethernet или Token Ring, FDDI приобрела значительное число своих последователей, которое увеличивается по мере уменьшения стоимости интерфейса FDDI. FDDI часто используется как основа технологий, а также как средство для соединения быстродействующих компьютеров, находящихся в локальной области.

Основы технологии

Стандарт FDDI определяет 100 Mb/сек. LAN с двойным кольцом и передачей маркера, которая использует в качестве среды передачи волоконно-оптический кабель. Он определяет физический уровень и часть канального уровня, которая отвечает за доступ к носителю; поэтому его взаимоотношения с эталонной моделью OSI примерно аналогичны тем, которые характеризуют IEEE 802.3 и IЕЕЕ 802.5.

Хотя она работает на более высоких скоростях, FDDI во многом похожа на Token Ring. Oбe сети имеют одинаковые характеристики, включая топологию (кольцевая сеть), технику доступа к носителю (передача маркера), характеристики надежности (например, сигнализация-beaconing), и др. За дополнительной информацией по Token Ring и связанными с ней технологиями обращайтесь к разделам, расположенным ниже.

Одной из наиболее важных характеристик FDDI является то, что она использует световод в качестве передающей среды. Световод обеспечивает ряд преимуществ по сравнению с традиционной медной проводкой, включая защиту данных (оптоволокно не излучает электрические сигналы, которые можно перехватывать), надежность (оптоволокно устойчиво к электрическим помехам) и скорость (потенциальная пропускная способность световода намного выше, чем у медного кабеля).

FDDI устанавливает два типа используемoгo оптического волокна: одномодовое (иногда называемое мономодовым) и многомодовое. Моды можно представить в виде пучков лучей света, входящего в оптическое волокно под определенным углом. Одномодовое волокно позволяет распространяться через оптическое волокно только одному моду света, в то время как многомодовое волокно позволяет распространяться по оптическому волокну множеству мод света. Т.к. множество мод света, распространяющихся по оптическому кабелю, могут проходить различные расстояния (в зависимости от угла входа), и, следовательно, достигать пункт назначения в разное время (явление, называемое модальной дисперсией), одномодовый световод способен обеспечивать большую полосу пропускания и прогoн кабеля на большие расстояния, чем многомодовые световоды. Благодаря этим характеристикам одномодовые световоды часто используются в качестве основы университетских сетей, в то время как многомодовый световод часто используется для соединения рабочих групп. В многомодовом световоде в качестве генераторов света используются диоды, излучающие свет (LED), в то время как в одномодовом световоде обычно применяются лазеры.

Технические условия FDDI

FDDI определяется 4-мя независимыми техническими условиями (смотри Рис. 2.6 "Стандарты FDDI"):

  • Media Access Control (MAC) (Управление доступом к носителю)

    определяет способ доступа к носителю, включая формат пакета, обработку маркера, адресацию, алгоритм CRC (проверка избыточности цикла) и механизмы устранения ошибок.

  • Physical Layer Protocol (PHY) (Протокол физического уровня)

    определяет процедуры кодирования/декодирования информации, требования к синхронизации, формированию кадров и другие функции.

  • Station Management (SMT) (Управление станциями)

    определяет конфигурацию станций FDDI, конфигурацию кольцевой сети и особенности управления кольцевой сетью, включая вставку и исключение станций, инициализацию, изоляцию и устранение неисправностей, составление графика и набор статистики.

FDDI Standarts

Рис. 2.6. FDDI Standarts

Физические соединения

FDDI устанавливает применение двойных кольцевых сетей. Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит из двух или более двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое-вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.

"Станции Класса В" или "станции, подключаемые к одному кольцу" (SAS) подсоединены к одной кольцевой сети; "станции класса А" или "станции, подключаемые к двум кольцам" (DAS) подсоединены к обеим кольцевым сетям. SAS подключены к первичному кольцу через "концентратор", который обеспечивает связи для множества SAS. Koнцентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.

На Рис. 2.7 "Узлы FDDI: DAS, SAS и концентратор" представлена типичная конфигурация FDDI, включающая как DAS, так и SAS.

FDDI Nodes: DAS, SAS and Concentrator

Рис. 2.7. FDDI Nodes: DAS, SAS and Concentrator

Каждая DAS FDDI имеет два порта, обозначенных А и В. Эти порты подключают станцию к двойному кольцу FDDI. Следовательно, как это показано на Рис. 2.8 "Порты DAS FDDI", каждый порт обеспечивает соединение как с первичным, так и со вторичным кольцом.

FDDI DAS Ports

Рис. 2.8. FDDI DAS Ports

Типы трафика

FDDI поддерживает распределение полосы пропускания сети в масштабе реального времени, что является идеальным для ряда различных типов прикладных задач. FDDI обеспечивает эту поддержку путем обозначения двух типов трафика: синхронного и асинхронного. Синхронный трафик может потреблять часть общей полосы пропускания сети FDDI, равную 100 Mb/сек; остальную часть может потреблять асинхронный трафик. Синхронная полоса пропускания выделяется тем станциям, которым необходима постоянная возможность передачи. Например, наличие такой возможности помогает при передаче голоса и видеоинформации. Другие станции используют остальную часть полосы пропускания асинхронно. Спецификация SMT для сети FDDI определяет схему распределенных заявок на выделение полосы пропускания FDDI.

Распределение асинхронной полосы пропускания производится с использованием восьмиуровневой схемы приоритетов. Каждой станции присваивается определенный уровень приоритета пользования асинхронной полосой пропускания. FDDI также разрешает длительные диалоги, когда станции могут временно использовать всю асинхронную полосу пропускания. Механизм приоритетов FDDI может фактически блокировать станции, которые не могут пользоваться синхронной полосой пропускания и имеют слишком низкий приоритет пользования асинхронной полосой пропускания.