Опубликован: 19.09.2008 | Доступ: свободный | Студентов: 660 / 71 | Оценка: 4.50 / 5.00 | Длительность: 21:25:00
Тема: Программирование
Специальности: Программист, Архитектор программного обеспечения
Лекция 21:
Утилиты работы с монадами
20.4. Библиотека Monad
module Monad (
MonadPlus(mzero, mplus),
join, guard, when, unless, ap,
msum,
filterM, mapAndUnzipM, zipWithM, zipWithM_, foldM,
liftM, liftM2, liftM3, liftM4, liftM5,- ...и то, что экспортирует Prelude
Monad((>>=), (>>), return, fail),
Functor(fmap),
mapM, mapM_, sequence, sequence_, (=<<),
) where- Определение класса MonadPlus
class (Monad m) => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a- Экземпляры класса MonadPlus
instance MonadPlus Maybe where
mzero = Nothing
Nothing `mplus` ys = ys
xs `mplus` ys = xs
instance MonadPlus [] where
mzero = []
mplus = (++)- Функции
msum :: MonadPlus m => [m a] -> m a
msum xs = foldr mplus mzero xs
join :: (Monad m) => m (m a) -> m a
join x = x >>= id
when :: (Monad m) => Bool -> m () -> m ()
when p s = if p then s else return ()
unless :: (Monad m) => Bool -> m () -> m ()
unless p s = when (not p) s
ap :: (Monad m) => m (a -> b) -> m a -> m b
ap = liftM2 ($)
guard :: MonadPlus m => Bool -> m ()
guard p = if p then return () else mzero
mapAndUnzipM :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip
zipWithM :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM f xs ys = sequence (zipWith f xs ys)
zipWithM_ :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ f xs ys = sequence_ (zipWith f xs ys)
foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldM f a [] = return a
foldM f a (x:xs) = f a x >>= \ y -> foldM f y xs
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
filterM p [] = return []
filterM p (x:xs) = do { b <- p x;
ys <- filterM p xs;
return (if b then (x:ys) else ys)
}
liftM :: (Monad m) => (a -> b) -> (m a -> m b)
liftM f = \a -> do { a' <- a; return (f a') }
liftM2 :: (Monad m) => (a -> b -> c) -> (m a -> m b -> m c)
liftM2 f = \a b -> do { a' <- a; b' <- b; return (f a' b') }
liftM3 :: (Monad m) => (a -> b -> c -> d) ->
(m a -> m b -> m c -> m d)
liftM3 f = \a b c -> do { a' <- a; b' <- b; c' <- c;
return (f a' b' c') }
liftM4 :: (Monad m) => (a -> b -> c -> d -> e) ->
(m a -> m b -> m c -> m d -> m e)
liftM4 f = \a b c d -> do { a' <- a; b' <- b; c' <- c; d' <- d;
return (f a' b' c' d') }
liftM5 :: (Monad m) => (a -> b -> c -> d -> e -> f) ->
(m a -> m b -> m c -> m d -> m e -> m f)
liftM5 f = \a b c d e -> do { a' <- a; b' <- b; c' <- c; d' <- d;
e' <- e; return (f a' b' c' d' e') }