Опубликован: 03.05.2012 | Уровень: для всех | Доступ: платный
Лекция 2:

Линейные устройства. Факторы, ухудшающие передачу

< Лекция 1 || Лекция 2: 1234 || Лекция 3 >
Аннотация: Приводится описание основных линейных устройств, необходимых для физической передачи информации — дифференциальные системы, эхокомпенсаторы и эхоподавители. Рассмотрены основные характеристики линии, прямое и переходное затухание, а также факторы, ухудшающие параметры передачи, шумы и помехи, отводы, пупиновские катушки.

Дифференциальная система (hybrid)

Пока еще абонентские линии в большинстве случаев двухпроводные. Во многих случаях имеются двухпроводные соединительные линии. Цифровые и аналоговые системы передачи, как правило, применяют четырехпроводные физические линии. Поэтому одна из задач состоит в переходе от двухпроводной линии к четырехпроводной. Схема, включаемая в линию и выполняющая такой переход, называется дифференциальной системой (hybrid). Это устройство ( рис. 2.1) в виде трансформатора (или группы трансформаторов), имеющего три отвода. В первый из них включается цепь, поступающая от цепей передачи. Во второй включается цепь, поступающая от цепей приема. В третью — балансные цепи. Принцип работы дифференциальной системы. Сигналы из цепей приема поступают в двухпроводную линию, а из нее — в цепь передачи с помощью трансформаторной связи. Информация, передаваемая в двухпроводную линию, может пройти в цепь приема четырехпроводной линии, как это показано пунктирной линией на рис. 2.1 . Для того чтобы этого не произошло, установлена третья обмотка (В), которая наводит в цепи приема четырехпроходной линии ток, обратный и равный по величине току передатчика четырехпроходной линии. Балансные цепи, предназначаются для того, чтобы установить нужные параметры этого тока. Балансный контур содержит активные (резисторы) и реактивные составляющие (емкостную и индуктивную). Его комплексное сопротивление должно быть согласовано с сопротивлением абонентской линии. Поскольку сопротивление линий изменяется, особенно если эта линия подключается к дифференциальной системе с помощью систем коммутации, такое сопротивление не может поддерживаться точно. В настоящее время в балансных схемах применяются управляемые (адаптируемые) цепи с комплексным сопротивлением, которое регулируется (управляется цифровым сигнальным процессором) с помощью программы. Надо отметить, что дифференциальные системы могут вносить дополнительное затухание и могут препятствовать высокоскоростной передаче. Поэтому в большинстве систем коммутации приняты меры по передаче, приему и выполнению сигналов отключения дифференциальной системы. Например, передача сигнала "отключение дифференциальной системы" с помощью частоты 2100 Гц.

Принцип работы дифференциальной системы

Рис. 2.1. Принцип работы дифференциальной системы

Эхокомпенсатор (echo canceller)

Основная проблема заключается в том, что при работе дифференциальной схемы возможен переход информации с цепей передачи на цепь приема, как это показано на рисунке пунктирной линией. Такой переход вызывает у абонента эффект эха. В линии, при наличии усилителей, это может привести к генерации. Информация, поступившая в цепь приема, может, пройдя усилитель, снова поступить в цепь передачи, что приведет, как принято говорить, к возбуждению всей системы передачи. Поэтому имеется третий трансформатор, задача которого - порождать в трансформаторе передачи компенсационный ток (текущий в обратном направлении и равный по величине току, поступившему от приемника). Чтобы этот ток можно было регулировать, применяется балансный контур, комплексное сопротивление которого регулируется в зависимости от параметров абонентской линии. В цифровых системах для улучшения качества тракта применяется цифровая схема эхо - компенсации (см. рис. 2.2 ). Явление "эхо" заключается в поступлении в приемник сигнала передатчика. Это может порождаться не только несовершенством дифференциальной системы, но и многими другими причинами (рассогласованием входных сопротивлений на разных участках передачи, эффектом отражения сигнала на длинной линии и т.п).

Эхо-компенсация [ 2 ] основывается на том, что обратный сигнал, повторяющий прямой, приходит с некоторым запаздыванием. Ее принцип заключается в том, что передаваемая в линию информация через цепь задержки передается в сумматор, стоящий в цепи приема. Там она вычитается (алгебраически суммируется) из принимаемого потока. Задержка и параметры сигнала выбираются таким образом, чтобы при вычитании уничтожить сигналы, перешедшие из собственной цепи передачи.

Структурная схема двухпроводной линии с эхокомпенсатором

Рис. 2.2. Структурная схема двухпроводной линии с эхокомпенсатором

Эхоподавление (echo suppressor)

Метод эхоподавления основан на том, что при передаче информации закрывается (ослабляется) цепь собственного приема. При эхоподавлении может происходить ухудшение качества связи в момент, когда оба абонента активны, а тракт приема одного из них заблокирован. Принцип действия эхоподавителя показан на рис. 2.3. Устройство для подавления эхосигнала основано на автоматической блокировке приема на время передачи. Для этого существуют два устройства: первое следит за активностью абонента A, второе — за активностью абонента Б. Активность Б определяется тем, что уровень сигнала в приемной цепи выше, чем уровень сигнала в передающей цепи.

Структурная схема двухпроводной линии с эхоподавителем

Рис. 2.3. Структурная схема двухпроводной линии с эхоподавителем

Факторы, ухудшающие передачу

Затухание

Прямое затухание — это интегральный показатель качества передающей среды. Затухание показывает уменьшение мощности сигнала в результате его прохождения через среду передачи. Количественно оно выражается отношением значения мощности на выходе P_{вых} к мощности на входе Р_{вх}:

b=\frac{P_{вых}}{P_{вх}}

Наиболее распространено представление затухания в виде логарифмического отношения, единица которого называется децибел (дБ).

b_{дБ}=10\log\frac{P_{вых}}{P_{вх}}

Обычно мощность согласно этой формуле определяется относительно 1 мВт. На практике удобно измерять не мощность, а напряжение, которое подается на входное сопротивление линии. В этом случае затухание определяется относительно напряжения  U = 0,775 В. Затухание тогда определяется по формуле

b_{дБ}=20\log\frac{U_{вых}}{U_{вх}}

Измерение затухания можно также проводить с помощью измерения тока. Тогда затухание определяется относительно величины I = 1,29 мкА по формуле

b_{дБ}=20\log\frac{I_{вых}}{I_{вх}}

В официальных документах, например нормах МСЭ-Т, начальным уровнем передачи считается 0 дБ, т.е. входная мощность равна 1 мВт. Эта единица измерения обозначается дБм (мощность в децибелах, отсчитываемая относительно 1 милливатта). Однако в реальной системе передачи входной сигнал редко совпадает с этим значением мощности. Уровень входного сигнала диктуется типом оборудования, типом и протяженностью линии. Поэтому во всех странах принято измерять затухание системы передачи относительно назначенной заранее точки отсчета в цепи передачи, по которой определяются значения уровней передачи во всех остальных точках. Эта точка неудачно названа точкой c нулевым уровнем передачи (Zero Transmission Level point). Заметим, что уровень в этой точке не равен нулю, например, в США уровень передачи на передающем окончании четрехпроводной системы передачи определен нормами (2 дБм). При этом уровень в других точках, измеренный относительно данной, обозначается для точек с более высоким уровнем +дБр(децибел-разность), или, для точек с более низким уровнем, просто дБр.(Английская аббревиатура dBrdecibels above reference). На рис. 2.4 показана зависимость коэффициента затухания от частоты для кабеля марки ТПП [ 8 ] . Под коэффициентом затухания понимается [ 34 ] относительное изменение мощности передачи сигнала, при распространении его на единицу расстояния, выраженное в км.

Частотная характеристика коэффициента затухания для кабеля ТП с диаметром жилы 0,4 мм

Рис. 2.4. Частотная характеристика коэффициента затухания для кабеля ТП с диаметром жилы 0,4 мм

На рис. 2.5 показана зависимость коэффициента затухания от частоты высокочастотного кабеля марки МКС (Многопарные Симметричные Кабели) 1X4 в алюминиевой оболочке с диаметром жилы 1,2 мм. Она приведена, чтобы показать характер поведения затухания при увеличении частоты и отметить, что кабельные пары способны поддерживать гораздо более высокие частоты, чем требует речевой тракт (примерно 3,4 КГц).

Частотная характеристика высокочастотного кабеля марки МКС (Многопарные Симметричные Кабели) 1X4 в алюминиевой оболочке с диаметром жилы 1,2 мм

Рис. 2.5. Частотная характеристика высокочастотного кабеля марки МКС (Многопарные Симметричные Кабели) 1X4 в алюминиевой оболочке с диаметром жилы 1,2 мм
< Лекция 1 || Лекция 2: 1234 || Лекция 3 >
Виталий Хмельницкий
Виталий Хмельницкий
Россия
Денис Лиховидов
Денис Лиховидов
Россия, Москва