Опубликован: 16.12.2009 | Уровень: для всех | Доступ: платный
Лекция 1:

Структура современной эконометрики

Лекция 1: 1234 || Лекция 2 >
Аннотация: Эконометрика - это наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей (Энциклопедический Словарь). Эконометрические методы - это прежде всего методы статистического анализа конкретных экономических данных, естественно, с помощью компьютеров. В нашей стране они пока сравнительно мало известны, хотя именно у нас наиболее мощная научная школа в области основы эконометрики - теории вероятностей. В настоящей лекции дается общее представление о структуре и возможностях эконометрики, включая ее последние достижения. Что дает эконометрика для формирования мышления менеджера и экономиста? Почему необходимо учить будущих экономистов и менеджеров эконометрике? Эти вопросы - центральные для нашего обсуждения.

Эконометрика сегодня

Статистические (эконометрические) методы используются в зарубежных и отечественных экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других статистических методов дает заметный экономический эффект. Например, в США - не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества. В 1988 г. затраты на статистический анализ данных в нашей стране оценивались в 2 миллиарда рублей ежегодно [1] . Согласно расчетам сравнительной стоимости валют на основе потребительских паритетов, эту величину можно сопоставить с 2 миллиардами долларов США. Следовательно, объем отечественного "рынка статистических и эконометрических услуг" был на порядок меньше, чем в США, что совпадает с оценками и по другим показателям, например, по числу специалистов.

Публикации по новым статистическим методам, по их применениям в технико-экономических исследованиях, в инженерном деле постоянно появляются, например, в журнале "Заводская лаборатория", в секции "Математические методы исследования". Надо назвать также журналы "Автоматика и телемеханика" (издается Институтом проблем управления Российской академии наук), "Экономика и математические методы" (издается Центральным экономико-математическим институтом РАН).

Однако необходимо констатировать, что для большинства менеджеров, экономистов и инженеров эконометрика является экзотикой. Это объясняется тем, что в вузах современным статистическим методам почти не учат. Во всяком случае, по состоянию на 2001 г. каждый квалифицированный специалист в этой области - самоучка.

Этому выводу не мешает то, что в вузовских программах обычно есть два курса, связанных со статистическими методами. Один из них - "Теория вероятностей и математическая статистика". Этот небольшой курс читают специалисты с математических кафедр и успевают дать лишь общее представление об основных понятиях математической статистики. Кроме того, внимание математиков обычно сосредоточено на внутриматематических проблемах, их больше интересует доказательства теорем, а не применение современных статистических методов в задачах экономики и менеджмента. Другой курс - "Статистика" или "Общая теория статистики", входящий в стандартный блок экономических дисциплин. Его читают экономисты, не всегда хорошо подкованные в математике. Фактически он является введением в прикладную статистику и содержит первые начала эконометрических методов (по состоянию на 1990 г.). Учебники по "Общей теории статистики" являются неисчерпаемой копилкой математико-статистических ошибок, они порождают поток публикаций, разоблачающих эти ошибки (см., например, [2]). Ничего удивительного в этом нет - такие учебники писали и пишут высококвалифицированные в своей области экономисты, однако они, как правило, плохо знают математику.

Эконометрика (как учебный предмет) призвана, опираясь на два названных вводных курса, вооружить экономиста, менеджера, инженера современным эконометрическим инструментарием, разработанным за последние 50-70 лет. Не владея эконометрикой, отечественный специалист - менеджер и инженер - оказывается неконкурентоспособным по сравнению с зарубежным. Во многих странах мира - Японии и США, Франции и Швейцарии, Перу и Ботсване и др. - статистическим методам обучают в средней школе, ЮНЕСКО постоянно проводят конференции по вопросам такого обучения [3] . В СССР и СЭВ, а теперь - по плохой традиции - и в России игнорируют этот предмет в средней школе и лишь слегка затрагивают его в высшей. Результат на рынке труда очевиден - снижение конкурентоспособности специалистов.

Обсудим сложившуюся ситуацию, уделив основное внимание статистическим методам в экономических и технико-экономических исследованиях, т.е. эконометрике.

Эконометрика = экономика + метрика

Сначала необходимо выяснить, что обычно понимают под эконометрикой. Затем обсудим современное состояние эконометрики как научно-практической дисциплины.

Во вводных монографиях по экономической теории, как правило, выделяют в качестве ее разделов макроэкономику, микроэкономику и эконометрику. При этом о макроэкономике и микроэкономике обычно подробно рассказывается в тех же монографиях или в дальнейших учебных пособиях, в то время как об эконометрике узнать что-либо самостоятельно российскому студенту почти невозможно. Лишь в последнее время появились отдельные курсы в нескольких московских экономических вузах и соответствующие учебники, увы, трактующие ее крайне узко.

В одном из наиболее распространенных в России вводном курсе западной экономической теории сказано: "Статистический анализ экономических данных называется эконометрикой, что буквально означает: наука об экономических измерениях" [4, с.25] . Действительно, термин "эконометрика" состоит из двух частей: "эконо-" - от "экономика" и "-метрика" - от "измерение". Эконометрика (в другом русско- и англоязычном варианте названия этой дисциплины - эконометрия) входит в обширное семейство дисциплин, посвященных измерениям и применению статистических методов в различных областях науки и практики. К этому семейству относятся, в частности, биометрика (или биометрия), технометрика, наукометрия, психометрика, хемометрика (наука об измерениях и применении статистических методов в химии). Особняком стоит социометрия - этот термин закрепился за статистическими методами анализа взаимоотношений в малых группах, т.е. за небольшой частью такой дисциплины, как статистический анализ в социологии. Эконометрика, как и другие "метрики", посвящена развитию и применению статистических методов в конкретной области науки и практики - в экономике, прежде всего в теории и практике менеджмента.

В мировой науке эконометрика занимает достойное место. Нобелевские премии по экономике получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо. В 2000 г. к ним добавились еще двое - Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе:

  • Journal of Econometrics (Швеция),
  • Econometric Reviews (США),
  • Econometrica (США),
  • Sankhya. Indian Journal of Statistics. Ser.D. Quantitative Economics (Индия),
  • Publications Econometriques (Франция).

Однако в нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, которая стараниями О.Ланге и его коллег покрыта сетью эконометрических "институтов" (в российской терминологии - кафедр вузов). В настоящее время в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины.

Кратко рассмотрим в настоящей лекции современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях.

Структура эконометрики

В эконометрике, как дисциплине на стыке экономики (включая менеджмент) и статистического анализа, естественно выделить три вида научной и прикладной деятельности (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

  • разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных;
  • разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики;
  • применение эконометрических методов и моделей для статистического анализа конкретных экономических данных.

Кратко рассмотрим три только что выделенных вида научной и прикладной деятельности. По мере движения от а) к в) сужается широта области применения конкретного эконометрического метода, но при этом повышается его значение для анализа конкретной экономической ситуации. Если работам вида а) соответствуют научные результаты, значимость которых оценивается по общеэконометрическим критериям, то для работ вида в) основное - успешное решение задач конкретной области экономики. Работы вида б) занимают промежуточное положение, поскольку, с одной стороны, теоретическое изучение эконометрических моделей может быть весьма сложным и математизированным (см., например, монографию [5]), с другой - результаты представляют интерес не для всей экономической науки, а лишь для некоторого направления в ней.

Прикладная статистика - другая область знаний, чем математическая статистика. Это четко проявляется и при преподавании. Курс математической статистики состоит в основном из доказательств теорем, как и соответствующие учебные пособия. В курсах прикладной статистики и эконометрики основное - методология анализа данных и алгоритмы расчетов, а теоремы приводятся как обоснования этих алгоритмов, доказательства же, как правило, опускаются (их можно найти в научной литературе). Внутренняя структура статистики как науки была выявлена и обоснована при создании в 1990 г. Всесоюзной статистической ассоциации (см., например, статью [6]). Прикладная статистика - методическая дисциплина, являющаяся центром статистики. При применении к конкретным областям знаний и отраслям народного хозяйства получаем научно-практические дисциплины типа "статистика в промышленности", "статистика в медицине" и др. С этой точки зрения эконометрика - это "статистические методы в экономике". Математическая статистика играет роль математического фундамента для прикладной статистики. К настоящему времени очевидно четко выраженное размежевание этих двух научных направлений. Математическая статистика исходит из сформулированных в 1930-50 гг. постановок математических задач, происхождение которых связано с анализом статистических данных. В настоящее время исследования по математической статистике посвящены обобщению и дальнейшему математическому изучению этих задач. Поток новых математических результатов (теорем) не ослабевает, но новые практические рекомендации по обработке статистических данных при этом не появляются. Можно сказать, что математическая статистика как научное направление замкнулась внутри себя. Сам термин "прикладная статистика", используемый с 1960-х годов, возник как реакция на описанную выше тенденцию. Прикладная статистика нацелена на решение реальных задач. Поэтому в ней возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими методами, т.е. путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Рассматриваемое соотношение математической и прикладной статистик отнюдь не являются исключением. Как правило, математические дисциплины проходят в своем развитии ряд этапов. Вначале в какой-либо прикладной области возникает необходимость в применении математических методов и накапливаются соответствующие эмпирические приемы (для геометрии это - "измерение земли" в т.н. Древнем Египте). Затем возникает математическая дисциплина со своей аксиоматикой (для геометрии это - время Евклида). Затем идет внутриматематическое развитие и преподавание (считается, что большинство результатов элементарной геометрии получено учителями гимназий в XIX в.). При этом на запросы исходной прикладной области перестают обращать внимание, и та порождает новые научные дисциплины (сейчас "измерением земли" занимается не геометрия, а геодезия и картография). Затем научный интерес к исходной дисциплине иссякает, но преподавание по традиции продолжается (элементарная геометрия до сих пор изучается в средней школе, хотя трудно понять, в каких практических задачах может понадобиться, например, теорема о том, что высоты треугольника пересекаются в одной точке). Следующий этап - окончательное вытеснение дисциплины из реальной жизни в историю науки (объем преподавания элементарной геометрии в настоящее время постепенно сокращается, в частности, ей все меньше уделяется внимания на вступительных экзаменах в вузах). К интеллектуальным дисциплинам, закончившим свой жизненный путь, относится средневековая схоластика. Как отмечает проф. МГУ им. М.В. Ломоносова В.Н.Тутубалин [7], теория вероятностей и математическая статистика успешно двигаются по ее пути - вслед за элементарной геометрией.

Подведем итог. Хотя статистические данные собираются и анализируются с незапамятных времен, современная математическая статистика как наука была создана, по общему мнению специалистов, сравнительно недавно - в первой половине ХХ в. Именно тогда были разработаны основные идеи и получены результаты, излагаемые ныне в учебных курсах математической статистики. После чего специалисты по математической статистике занялись внутриматематическими проблемами, а для теоретического обслуживания проблем практического анализа статистических данных стала формироваться новая дисциплина - прикладная статистика. (Ее центральным печатным органом в нашей стране является упомянутая выше секция "Математические методы исследования" журнала "Заводская лаборатория", где за последние 30 лет опубликовано более 1000 статей по прикладной статистике.)

В настоящее время статистическая обработка данных проводится, как правило, с помощью соответствующих программных продуктов. Разрыв между математической и прикладной статистикой проявляется, в частности, в том, что большинство методов, включенных в статистические пакеты программ (например, в заслуженные Statgraphics и SPSS или в более новую систему Statistica), даже не упоминается в учебниках по математической статистике. В результате специалист по математической статистике оказывается зачастую беспомощным при обработке реальных данных, а пакеты программ применяют (что еще хуже - и разрабатывают) лица, не имеющие необходимой теоретической подготовки. Естественно, что они допускают разнообразные ошибки (напомним, анализ типовых ошибок при применении критериев согласия Колмогорова и омега-квадрат дан в [2]), в том числе в таких ответственных документах, как государственные стандарты по статистическим методам (ниже подробнее рассказано об удручающих результатах анализа этих стандартов; итоги суммированы в статье [8]).

Ситуация с внедрением современных статистических (эконометрических) методов на предприятиях и в организациях различных отраслей народного хозяйства противоречива. К сожалению, при развале отечественной промышленности в 1990-е годы больше всего пострадали структуры, наиболее нуждающиеся в эконометрических методах - службы качества, надежности, центральные заводские лаборатории и др. Однако толчок к развитию получили службы маркетинга и сбыта, сертификации, прогнозирования, инноваций и инвестиций, которым также полезны различные эконометрические методы, в частности, методы экспертных оценок.

Лекция 1: 1234 || Лекция 2 >
Михаил Агапитов
Михаил Агапитов

Не могу найти  требования по оформлению выпускной контрольной работы по курсу профессиональной переподготовки "Менеджмент предприятия"

Подобед Александр
Подобед Александр

Я нажал кнопку "начать курс" и почти его уже закончил, но для получения диплома на бумаге, нужно его же оплатить? Как оплатить? 

Ирина Симонян
Ирина Симонян
Армения, Ереван, ЕГУ, 1998
Дмитрий Степаненко
Дмитрий Степаненко
Россия