Опубликован: 10.10.2014 | Уровень: для всех | Доступ: платный | ВУЗ: Московский государственный университет путей сообщения
  • 1.
    Artificial Intelligence throw Simulated Evolution.
  • 2.
    Adaptation in Natural and Artificial Systems.An Introductionary Analysis With Application to Biology? Control and Artificial Intelligence.
  • 3.
    Genetic Algorithms in Search, Optimization and Machine Learning.
  • 4.
    Evolutionstrategie: Optimierung technisher Systems nach Prinzipien der biologischen Evolution.
  • 5.
    Genetic Programming.
  • 6.
    Самообучающиеся системы распознавания и автоматического управления.
  • 7.
    Основы теории обучающихся систем.
  • 8.
    Статистические методы поиска.
  • 9.
    Эволюционное моделирование и его приложения.
  • 10.
    Эвоинформатика: теория и практика эволюционного моделирования.
  • 11.
    Генетические алгоритмы.
  • 12.
    Генетические алгоритмы.
  • 13.
    Теория эволюционных вычислений.
  • 14.
    Основы эволюционных вычислений.
  • 15.
    Genetic Algorithms + data structures=Evolution Programs.
  • 16.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 17.
    Introduction to genetic algorithms.
  • 18.
    No free lunch theorems for search / Operations research
  • 19.
    No Free Lunch Theorems for Search Technical
  • 20.
    Adaptation in Natural and Artificial Systems. An Introductory Analysis with Application to Biology - Control and Artificial Intelligence.
  • 21.
    Genetic Algorithms in Search, Optimization and Machine Learning.
  • 22.
    Генетические алгоритмы.
  • 23.
    Основы эволюционных вычислений.
  • 24.
    Genetic Algorithms + data structures=Evolution Programs.
  • 27.
    Моделирование и тестирование дискретных устройств.
  • 28.
    Генетические алгоритмы для сокращения диагностической информации //Автоматика и телемеханика.
  • 29.
    Combinational profiles of sequential benchmark circuits // Proceed. of 1989 Intern. Symposium on Sequential Circuits
  • 30.
    Моделирование, тестирование и диагностика цифровых устройств.
  • 31.
    Современные модификации и обобщения генетических алгоритмов // Таврический вестник компьютерных наук и математики
  • 32.
    Основы эволюционных вычислений.
  • 33.
    An introduction to genetic algorithms.
  • 34.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 35.
    Genetic Algorithms + data structures=Evolution Programs.
  • 36.
    Adaptation in genetic algorithms. In: Genetic algorithms for pattern recognition.
  • 37.
    A comparison of parallel and sequential niching methods.//Proceedings of VI International conference on genetic algorithms.
  • 38.
    Lamarkian evolution, the Baldwin effect & function optimization, in Davidor Y., Schwefel H., Manner R., editors, Parallel problem solving from nature: PPSN III
  • 39.
    Lamarkian learning in multi-agent environment//Proceedings of the 4th international conference on genetic algorithms
  • 40.
    A genetic algorithm applied to robot trajectory generation. Davis L.editor, Handbook of genetic algorithms
  • 41.
    A memetic approach for the traveling salesman problem: implementation of computational ecology for combinatorial optimization on message-passing systems//Proceedings of international conference on parallel computing & transporter application
  • 42.
    Formal memetic algorithm//Proceeding - Selected Papers from AISB Workshop on Evolutionary Computing.
  • 43.
    The selfish gene.
  • 44.
    Hand book of memetic algorithms.
  • 45.
    Adaptation of genetic algorithm parametres based on fuzzy logic controllers// In F.Herera & J.Verdegay, editors. Genetic algorithms and soft computing, Physica-Verlag.
  • 46.
    Network models and optimization.
  • 47.
    Adaptation in evolutionary computation: a survey//Proceedings of IEEE international conference on evolutionary computation
  • 48.
    editor. Handbook of genetic algorithms.
  • 49.
    What have you done for me lately adapting operator probabilities in a steady-state genetic algorithm//Proceedings 6th international conference on Gas, San Francisco
  • 50.
    Asow-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance//IEEE Transactions on Evolutionary Computation, 2006, 10(1)
  • 51.
    "Auto-tuning strategy for evolutionary algorithms:Balancing between exploration and exploitation," Soft Computing,vol. 13
  • 52.
    Reducing the search time of a steady state genetic algorithm using the immigration operator//Proceedings IEEE International Conference Toolsfor AI.- 1991
  • 53.
    Основы эволюционных вычислений.
  • 54.
    Параллельные генетические алгоритмы// Науков? прац? Донецького национального техн?чного ун?верситету, сер?я "Обчислювальна техн?ка та автоматизац?я",
  • 55.
    A survey of parallel distributed genetic algorithms//Complexity.
  • 56.
    Parallelism and evolutionary algorithms//IEEE Trans. On evolutionary computation.
  • 57.
    Computional intelligence: introduction. John Wiley&Sons Ltd.
  • 58.
    ECHO: Explorations of Evolution in a Miniature World. In J.D. Farmer and J. Doyne, editors, Proceedings of the Second Conference on Artificial Life
  • 59.
    Learning, adaptation and evolution of intelligent robotic system. In proceedi.H.Holland. ECHO: Explorations of evolution in miniature world. In J.D.Farmer an ngs of the IEEE international symposium on intelligent control, 1988
  • 60.
    New methods for competitive coevolution. Evolutionary computation, 1997.- 5(1).
  • 61.
    Evolving complex structures via cooperative coevolution. In proceedings of the fourth annual conference on evolutionary programming, 1995.
  • 62.
    A cooperative coevolutionary approach to function optimization. In T.Davidor, H-P. Schwefel and R.Manner, editors, Proceedings of the paralltl problem solving from nature, 1994
  • 63.
    Evolving neural networks with collaborative species. In proceedings of the summer computer simulation conference, 1995
  • 64.
    A coevolutionary approach to learning sequential desicision rules. In L.Eshelman, editor, Proceedings of the sixth international conference on genetic algorithms, 1995
  • 65.
    Manual di Economica Polittica, Societa Editrice Libraia, Milan, Italy,1906; translated into English by A.S.Schwier, as Manual of Political Economy.
  • 66.
    Network models and optimization.
  • 67.
    Genetic Algorithms + data structures=Evolution Programs.
  • 68.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 69.
    Multiple objective optimization with vector evaluated genetic algorithms, Proceeding 1st International Conference on Gas
  • 70.
    Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization, Proceeding 5th International Conference on Gas
  • 71.
    A multiobjective genetic local search algorithm and its applications to flowshop scheduling// IEEE Transactions on Systems, Man and Cybernetics,1998.- 28(3),
  • 72.
    Genetic algorithms and engineering optimization
  • 73.
    A fast and elitist multiobjective genetic algorithm: NSGA-II// IEEE Transactions on Evolutionary Computation, 2002.- 6(2)
  • 74.
    Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation, Soft Computing, Vol. 13
  • 75.
    A learning machine: part1// IBM J. research and development.-1958
  • 76.
    Genetic Programming.
  • 77.
    Основы эволюционных вычислений
  • 78.
    Искусство программировния.Т.1
  • 79.
    Genetic programming: introduction.
  • 80.
    A comparison of linear genetic programming and neural networks in medical data mining// IEEE Transactions on Evolutionary Computation.
  • 81.
    Linear-graph GP - a new GP structure// Proceedings of the 4th European Conference on Genetic Programming.
  • 82.
    Модификации генетического программирования//Труды конференций "Интеллектуальные системы" и "Интеллектуальные САПР"
  • 83.
    Extened genetic programming with recombinative guidance.
  • 84.
    Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Laboratoire del'Informatique du Parallelisme, Ecole Normale Superieure de Lyon, France.
  • 85.
    Lindermayer A. The Algorithmic Beaty of Plants
  • 86.
    Grammaticaly-based genetic programming // In Roska J.P.,editor, Proceedings of the workshop on Genetic Programming:From Theory to Real-World Application
  • 87.
    Adaptation in Natural and Artificial Systems. An Introductory Analysis with Application to Biology. Control and Artificial Intelligence.
  • 88.
    Using genetic algorithms for concepts learning// Machine Learning.
  • 89.
    Genetic Algorithms in Search, Optimization and Machine Learning.
  • 90.
    Machine Learning
  • 91.
    Genetic Algorithms + data structures=Evolution Programs.
  • 92.
    Classifier fitness based on accuracy//Evolutionary Computation, №3(2)
  • 93.
    Generalization in the XCS classifier system// Genetic Programming 1998: Proceedings of the Third Annual Conference
  • 94.
    Based Evolutionary Online Learning
  • 95.
    Генетический подход к задачам прогнозирования// Науков? прац? Донецького нац?онального техн?чного ун?верситету: сер?я"Обчислювальна техн?ка та автоматизац?я".- Випуск 90
  • 96.
    The Equilibrium Genetic Algorithm and the Role of Crossover.
  • 97.
    Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning (Tech. Rep. No. CMU-CS-94-163).
  • 98.
    The Compact Genetic Algorithm// IEEE Trans. Evolutionary Computation. - 1999. - vol. 3.
  • 99.
    The Selfish Gene Algorithm: a new Evolutionary Optimization Strategy. Proceedings of the ACM Symposium on Applied Computation.
  • 100.
    Вероятностные и компактные генетические алгоритмы// Искусственный интеллект
  • 101.
    Основы эволюционных вычислений.
  • 102.
    Метаэвристики.
  • 103.
    Evolutionstrategie: Optimierung technisher Systems nach Prinzipien der biologischen Evolution.
  • 104.
    Genetic Algorithms + data structures=Evolution Programs.
  • 105.
    Evolution strategy. In J.Zurada,R.MarksI, C.Robinson. Computational Intelligence - Imitating Life, Piscatway,NJ: IEEE Press.-1994.
  • 106.
    Numerical Optimization of Computer Models.
  • 107.
    Performance Improvement of Evolution Strategies using Reinforcement Learning. In Proceedings of the IEEE International Fuzzy Systems Conference, volume 2
  • 108.
    Step Size Adaption in Evolution Strategies using Reinforcement Learning. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1
  • 109.
    An Evolution Strategy with Coordinate System Invariant Adaption of Arbitrary Normal Mutation Distributions within The Concept of Mutative Strategy Parameter Control. In Proceedings of the Genetic and Evolutionary Computation Conference
  • 110.
    Towards Self-Adapting Evolution Strategies// Proceedings of the Second IEEE Conference on Evolutionary Computation
  • 111.
    An Evolution Strategy with Competing Subpopulations// Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997
  • 112.
    Directed Mutation - A New Self-Adaption for Evolution Strategies. In Proceedings of the IEEE Congress on Evolutionary Computationю.-1999
  • 113.
    Computional intelligence: introduction
  • 114.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 115.
    Artificial Intelligence throw Simulated Evolution.
  • 117.
    Evolutional computation: toward a new philosophy of machine entelligence. New York:IEEE Press.
  • 118.
    Evolutionary Design be Computers.
  • 119.
    Computional intelligence: introduction.
  • 120.
    System Identification throught Simulated Evolution: A Machine Learning Approach to Modeling.
  • 121.
    Combining Mutation Operators in Evolutionary Programming/ IEEE Transactions on Evolutionary Computation.-1998.-2(3)
  • 122.
    Learning to play games using a PSO-based competitive learning approach//IEEE Transactions on Evolutionary Computations.-8(3).
  • 123.
    Evolving Artificial Intelligence.
  • 124.
    Evolutionary programming using mutations based on the Levy probability distribution//IEEE Transactions on Evolutionary Computations.-8(2)
  • 125.
    Combining mutation operatots in evolutionary programming// IEEE Transactions on Evolutionary Computations.-2(3)
  • 126.
    Evolutionary-Programming-Based Algorithms from Environmentally-Constrained Economic Dispatch// IEEE Transactions on Power Systems.-13(2).
  • 127.
    Meta-Evolutionary Programming.In Proceedings of the Twenty-Fifth Conference on Signals,Systems and Computers.- 1991.-volume 1
  • 128.
    An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation,1(1)
  • 129.
    An Evolutionary That Constructs Recurrent Neural Networkd.//IEEE Transactions on Neural Networks, 5(1).
  • 130.
    Determination of Operational Parameters of Electrical Machines using Evolutionary Programming// Proceedings of the Seventh International Conference on Electrical Machines and Drives.-1995
  • 131.
    Evolutionary programming based optimal power flow algorithm//IEEE Transactions on Power Systems.-14(4)
  • 132.
    A Novel Hybrid Evolutionary Programming Method for Function Optimization// Proceedings of the IEEE Congress on Evolutionary Computation.-2000.- volume 1
  • 133.
    Fast Immunized Evolutionary Programming. In Proceedings of the IEEE Congress on Evolutionary Computation.-2004.-volume 1
  • 134.
    Meta-Evolutionary Programming// Proceedings of the Twenty-Fifth Conference on Signals, Systems and Computers.- 1991.- volume 1
  • 135.
    An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines. In J. McDonnell, R. Reynolds, and D.B. Fogel,editors// Proceedings of the Fourth Annual Conference on Evolutionary Programming.
  • 136.
    Evolutionary Programming with Noncoding Segments for Realvalued Function Optimization// Proceedings of the IEEE International Conference on Systems, Man and Cybernetics.-1999.-volume 4
  • 137.
    Multiple-vector self adaptation in evolutionary algorithms//BioSystems-2001.-61(2-3)
  • 138.
    Particleswarmintelligence//ProceedingsoftheIEEEInternationalJoint Conference on Neural Networks.-1995
  • 139.
    Computional intelligence: introduction.
  • 140.
    Introduction to genetic algorithms.
  • 141.
    Метаэвристики.
  • 142.
    Optimization, learning and natural algoriothms.PhD. thesis.
  • 143.
    Introduction to genetic algorithms.
  • 144.
    Computional intelligence: introduction.
  • 145.
    The ant colony optimization meta-heuristic.InD.Corne, M.Dorigo, F.Glover, editors.// New ideas in optimization.
  • 146.
    The ant system applied to the quadratic assignment problem//IEEE transactions on knowledge and data engineering, № 11(5)
  • 147.
    Ant system: optimization by a colony of cooperative agents//IEEE transactions on systems, man and cybernetics-part B,№ 26(1).
  • 148.
    Ant colony systems: a cooperative leaning approach to the traveling salesman problem//IEEE transactions on evolutionary computation.-№ 1(1).
  • 149.
    MAX-MIN ant system and local search for the traveling salesman problem// Proceedings of the IEEE international conference on evolutionary computation.-1997
  • 150.
    Ant-Q: a reinforcement learning approach to TSP// Proceedings of twelfth international conference on machine learning.-1995.
  • 151.
    FANT: fast ant system. Technical report IDSIA 46-98
  • 152.
    Parallelization strategies for the ant systems//In G.Toraldo, A.Murli,P.Pardalos, editor.Kluwer. Series on applied optimization
  • 153.
    An ANTS heuristic for the frequency assignment problem//Future generation computer systems, №16(9)
  • 154.
    Applying population base ACO to dynamic optimization problems// Proceedings of third international workshop on ant colony optimization and swarm intelligence.-2003
  • 155.
    Dynamic ant colony optimization for TSP//International Journal of advanced manufacturing technology.№ 22(7-8)
  • 156.
    Pheromone modification strategies for ant algorithms applied to dynamic TSP// Proceedings of the workshop on applications of evolutionary computing.-2001
  • 157.
    ANTabu. Technical report LIL-98-04
Ольга Ковалевская
Ольга Ковалевская
Россия, Волгоградская область
Фродо Ёркинс
Фродо Ёркинс
Россия