Опубликован: 07.08.2007 | Уровень: специалист | Доступ: платный | ВУЗ: Московский физико-технический институт
Лекция 1:

Введение в новейшие телекоммуникационные технологии

Человечество постоянно стремилось расширить возможности своих органов чувств (каналов коммуникаций с окружающей средой). Так были созданы подзорная труба и микроскоп, термометр и газоанализаторы, высокочувствительные микрофоны и радиолокаторы, а также многое другое. Подзорная труба может рассматриваться как аналоговое однонаправленное телекоммуникационное устройство.

Рассмотрим, какие искусственные каналы коммуникаций создал сам человек за последние тысячелетия своего существования. Представьте себе следующую сцену, возможно имевшую место много столетий тому назад.

На горизонте поднялось легкое облачко, которое начало расти и шириться. Постепенно становилось ясно, что это облако пыли, поднятое множеством лошадиных копыт. На вершине холма дозорные настороженно следили за приближением этого отряда, и когда увидели, что это большой отряд противника, старший дал команду разжигать сигнальный костер. Из небольшого очага, где огонь поддерживался круглые сутки, специальным захватом была извлечена пылающая головня и помещена в основание большого сигнального костра. Сначала огонь разгорался медленно, но уже через несколько минут столб дыма и огонь поднялись на многие метры. Тогда его заметил другой сигнальный отряд, размещенный в нескольких верстах от первого, и там тоже зажгли сигнальный костер.

Такая техника позволяла передать 1 бит информации (логический нуль или логическая единица) на расстояние до 100 км менее чем за один час (время сильно варьировалось в зависимости от рельефа местности и погоды). Скорость такого метода передачи данных в дневное время можно было удвоить, используя черный или белый дым. Костры часто размещались на специально построенных вышках для увеличения расстояния между ними. Естественно, этот метод был ненадежен - проливной дождь или вьюга могли помешать разжечь костер, да и видимость при этом могла оказаться весьма ограниченной.

Альтернативный метод посылки депеши с всадником позволял передать несравненно больший объем информации, но со скоростью, меньшей почти на порядок, - ведь прямых дорог тогда не было, да и водные преграды или горы могли существенно замедлить движение. В море сходный метод, с использованием сигнального масляного фонаря, давал возможность передавать короткие сообщения в пределах прямой видимости для координации действий кораблей.

Но даже такой технологии хватало для длительного существования гигантских государственных образований (от империи Александра Македонского до Римской империи). Именно со скоростью лошади либо деревянного гребного или парусного бескилевого судна передавались сообщения с периферии в центр, а оттуда в обратном направлении посылались руководящие инструкции или решения. Задержка достигала многих месяцев. Удивительно, но этого было вполне достаточно для стабильного существования государства. Вероятно, чиновники были вынуждены обдуманно принимать решения, так как быстро исправить ошибку было нельзя. Решение проблемы здесь лежит в предоставлении определенной самостоятельности властям провинции (приближение центра принятия решения к объекту управления). Еще одним средством решения проблемы большой задержки в цепи принятия решения (RTT, в сетевой терминологии) является выработка набора унифицированных правил реагирования на стандартные ситуации (в случае сетей такие правила называются протоколами). Даже применение самых мощных информационных и телекоммуникационных технологий не позволит эффективно управлять из Москвы автомобилем во Владивостоке.

Когда императоры Римской империи попытались в долговременном плане построить жесткую вертикаль власти, империя распалась сначала на две части, а позднее на большое число независимых государств.

Техника телекоммуникаций с временем RTT (Round Trip Time), равным 2-6 месяцам, просуществовала без существенных изменений более 1500 лет.

Только в XIX веке стали появляться железные дороги, пароходы и, что особенно важно, электрический телеграф и телефон. Связь с применением азбуки Морзе в 1840-х годах позволяла передать до 10 бит/с информации на расстояние десятки и сотни километров. Азбука Морзе, пожалуй, была первым широко распространенным телекоммуникационным кодом (см. таблицу 1.1). Коды здесь представляют собой последовательности точек и тире. Отличие точки от тире определяется длительностью сигнала (точке соответствует более короткий сигнал). Возможны варианты, когда точке и тире соответствуют импульсы тока или напряжения разной полярности. Такая схема исключает зависимость идентификации символа от длительности импульса. Максимальная скорость передачи классического телеграфа может составлять 950-1100 слов в час. В 1884 году начала функционировать телеграфная линия Вашингтон–Балтимор. Для линий связи в ту пору использовалась стальная проволока диаметром ~5 мм. В качестве источников электроэнергии применялись батареи с напряжением 40-120 В. Импульсы тока имели амплитуду 10-25 мА. Сама система являлась электромеханической и предполагала использование контактного ключа (вспомните шпионские фильмы периода Второй мировой войны). Позднее ключ был заменен клавиатурой. Нажатие на определенную клавишу вызывало формирование последовательности сигналов, соответствующей определенной букве, что позволяло в несколько раз ускорить процедуру передачи. Такое устройство, получившее название телетайп, было предложено Кляйшмидтом и Моркрамом в 1915 году в США. На первых порах использовались электромеханические приемные устройства, которые печатали точки и тире, что было крайне неудобно. Позднее стали применяться устройства, которые могли дешифровать коды Морзе (или Бодо) и печатать на ленте буквы. Люди старшего поколения, возможно, еще помнят бланки телеграмм, на которые были наклеены куски ленты с текстом, полученные от таких устройств.

Телекоммуникационный канал содержал два провода (см. рис. 1.1), по одному ток течет в одном направлении, по второму - в обратном. Понятно, что железо в качестве проводника не идеально (удельное сопротивление 8,8x10-6 Ом*см, да и склонность к ржавчине чего стоит), зато дешево. Лучше была бы медь или алюминий (1,56x10-6 и 2,45x10-6 Ом*см соответственно). Еще лучше серебро - 1,51x10-6 Ом x см. Золото по своим электрическим свойствам занимает положение между медью и алюминием. Полагаю, не нужно пояснять, почему каналы коммуникаций никогда не делали из серебра и тем более из золота (и с медью мороки не оберешься…). Омическое сопротивление является причиной ослабления сигнала, что ограничивает предельное расстояние передачи по проводной линии. Поэтому приходится на определенных расстояниях ставить станции ретрансляции.


Рис. 1.1.
Код Морзе Буквы   Код Морзе Буквы и символы
Русские Латинские Русские Латинские
x- А Aa x-x- Я \cong
-xxx Б Bb x--- Й Jj
x-- В Ww -xx- Ь, Ъ Xx
--x Г Gg xx-xx; Э OP
-xx Д Dd x---- 1
x Е Ee xx--- 2
xxx- Ж Vv xxx-- 3
--xx З Zz xxxx- 4
xx И Ii xxxxx 5
-x- К Kk -xxxx 6
x-xx Л Ll --xxx 7
-- М Mm ---xx 8
-x Н Nn ----x 9
--- О Oo ----- 0
x--x П Pp xxxxx . (точка)
x-x Р Rr x-x-x- , (запятая)
xxx С Ss -x-x-x ;
- Т Tt ---xxx :
xx- У Uu xx-xx ?
xx-x Ф Ff --xx-- !
xxxx Х Hh ------ /
-x-x Ц Cc xx--x- _ (подчеркивание)
---x Ч _` x-x-x + (конец)
---- Ш Ch -xxx- -
--x- Щ Qq -xxx- знак раздела
-x-- Ы Yy x-x-x-x- начало действия
xx-- Ю gh xxxxxxx исправление ошибки

Рассматривая таблицу кодов Морзе, следует обратить внимание на то, что наиболее часто используемые буквы имеют более короткие коды (это прежде всего е, т, а, и, н и м). Это очень важный принцип, позволяющий увеличить среднюю скорость передачи данных. Он применяется достаточно широко - можно, например, вспомнить принцип распределения символов на клавиатуре ЭВМ, в центре размещаются наиболее часто используемые буквы. Посмотрите на клавиатуру вашей ЭВМ, в центре и ближе к клавише пробела размещаются именно указанные выше буквы. Используется эта техника и при архивировании данных (алгоритм Хафмана). Кроме того, весьма важными являются паузы между буквами. Если пауза окажется малой, то трудно будет отличить НН от Ц, АА от Я и т.д.

Позднее было создано много других типов кодов (например, код Бодо для буквопечатающих аппаратов, ASCII или КОИ8) - в них, как правило, каждому символу или сигналу соответствует 5-8 бит. Сигналами отмечается, например, начало/конец передачи или исправление ошибки. Характерной особенностью ранних систем было отсутствие кодов для строчных букв. В мире много национальных алфавитов. Многие из них содержат специфические символы - достаточно вспомнить символьный набор китайского языка (в детстве меня занимал вопрос: как устроена китайская пишущая машинка?). Чтобы решить проблемы кодирования национальных алфавитов, был придуман юникод, где каждому символу ставится в соответствие два октета (байта). Это позволяет расширить многообразие символов с 256 до 65536.

Аналогичные принципы лежат в основе морских флажковых семафоров, где каждой букве соответствует определенное положение рук сигнальщика. Здесь можно также вспомнить французский семафор, изобретенный в 1830 году. Но это, так же как и сигнальные костры, можно считать первыми приложениями, использующими передачу данных по оптическим каналам связи.

Коды Морзе применялись вплоть до второй половины XX века. Их привлекательность была связана с ограниченностью требуемой полосы пропускания канала, а также с тем фактом, что для передачи были пригодны старые, довольно низкокачественные каналы.

Введя модуляцию на частоте 1500 Гц (1936 г.), удалось получить до 24 телексных каналов по одному телефонному каналу с полосой 4 КГц (50 бод). Позднее телексная сеть обрела самостоятельность и была окончательно вытеснена современными средствами связи лишь в конце XX века.

К 1950 годам большинство стран использовало три типа общедоступных сетей:

  1. Телеграфная сеть, которая просуществовала до конца XX века.
  2. Телефонная сеть (аналоговая), имеющая полосу 4 КГц и почти не менявшаяся по принципам работы с 1880-х годов. Импульсная сигнальная система практически сохранилась без изменений с 1910 года.
  3. Телексная сеть, которая применялась в основном для делового обмена.

Рассмотрим причины того, что проводные системы связи, оставшиеся в наследство от телеграфа, малопригодны для современных систем телекоммуникаций. Двухпроводные структуры, применявшиеся там, как правило, навешивались на телеграфные столбы или укладывались в виде кабелей в подземные каналы. Среднегеометрическое расстояние между проводами не было постоянным, более того, оно могло изменяться со временем, например, под действием ветра. Это приводило к тому, что волновые свойства такой структуры варьировались, и это с неизбежностью становилось причиной искажений формы сигнала для длинных участков канала. Такие искажения ограничивали предельно возможную скорость передачи и длину канала без промежуточных ретрансляторов.

На первый взгляд прогресс в области электроники может снять проблему ослабления сигнала из-за омического сопротивления проводов и исключить необходимость использования амплитуд сигналов порядка 40-100 В. Казалось бы, ставя промежуточные усилители, можно поддерживать амплитуду полезного сигнала в заданных пределах. Идеальным примером такого решения могут служить трансокеанские телефонные кабели.

Беда в том, что ослабление сигнала из-за резистивных потерь не сопровождается ослаблением шума в канале. Усилители же увеличивают уровень шума пропорционально своему коэффициенту передачи. По этой причине рано или поздно средние значения амплитуд сигнала и шума могут сравняться.

Конечно, по пути транспортировки данных и на принимающей стороне предпринимаются усилия по фильтрации шума. Так как тепловые шумы достаточно высокочастотны, в случае телеграфии или телефонии можно существенно улучшить отношение сигнал/ шум простым подавлением высокочастотной составляющей сигнала.

Передача данных по протяженным каналам через пустынные области, например, по дну океана, как было отмечено выше, требует наличия усилителей, а усилители нуждаются в питании. Обычно питание передается по тому же кабелю, и здесь также вмешиваются омические потери.

Известно, что в оптоволокне сигнал подвергается меньшему погонному ослаблению, чем в медном проводе. Было бы замечательно, если бы был найден способ, передачи энергии для оптоэлектрических усилителей по оптическому волокну.

Илья Сидоркин
Илья Сидоркин

Добрый день! Подскажите пожалуйста как и когда получить диплом, после сдичи и оплаты?????

Наталья Шульга
Наталья Шульга

Курс "информационная безопасность" .

Можно ли на него записаться на ПЕРЕПОДГОТОВКУ по данному курсу? Выдается ли диплом в бумажном варианте и высылается ли он по почте?

Максим Жигай
Максим Жигай
Россия, г. Челябинск
дима щщщщщщщщщщщ
дима щщщщщщщщщщщ
Россия