Опубликован: 17.06.2013 | Доступ: свободный | Студентов: 6242 / 3616 | Длительность: 17:10:00
Лекция 3:

Внешние запоминающие устройства

Метод записи данных на гибкий магнитный диск

Используют два основных метода записи: метод частотной модуляции (ЧМ) и метод модифицированной ЧМ. В контроллере (адаптере) НГМД данные обрабатываются в двоичном коде и передаются в НГМД в последовательном коде.

Способ частотной модуляции является двухчастотным. При записи в начале тактового интервала производится переключение тока в МГ и направление намагниченности поверхности изменяется. Переключение тока записи отмечает начало тактов записи и используется при считывании для формирования сигналов синхронизации.

Способ обладает свойством самосинхонизации. При записи "1" в середине тактового интервала производится инвертирование тока, а при записи "0" - нет. При считывании в моменты середины тактового интервала определяют наличие сигнала произвольной полярности.

Наличие сигнала в этот момент соответствует "1", а отсутствие - "0".

Диаграмма магнитной записи способом частной модуляции: с - синхросигнал

Диаграмма магнитной записи способом частной модуляции: с - синхросигнал
Формат записи информации на гибком магнитном диске

Каждая дорожка на дискете разделена на секторы. Размер сектора является основной характеристикой формата и определяет наименьший объем данных, который может быть записан одной операцией ввода-вывода. Применяемые в НГМД форматы различаются числом секторов на дорожке и объемом одного сектора. Максимальное количество секторов на дорожке определяется операционной системой. Секторы отделяются друг от друга интервалами, в которых информация не записывается. Произведение числа дорожек на количество секторов и количество сторон дискеты определяет ее информационную емкость.

Формат записи информации на ГМД

Формат записи информации на ГМД

Каждый сектор включает поле служебной информации и поле данных. Адресный маркер - это специальный код, отличающийся от данных и указывающий на начало сектора или поля данных. Номер головки указывает одну из двух МГ, расположенных на соответствующих сторонах дискеты. Номер сектора - это логический код сектора, который может не совпасть с его физическим номером. Длина сектора указывает размер поля данных. Контрольные байты предназначены

Среднее время доступа к диску в миллисекундах оценивается по следующему выражению: t_{ср}= (N-1)*t_1/3+t_2, где N - число дорожек на рабочей поверхности ГМД; t_1 - время перемещения МГ с дорожки на дорожку; t_2 - время успокоения системы позиционирования.

Конструкция дискет
5,25 дюйма

5,25 дюйма
3,5 дюйма

3,5 дюйма

Накопитель на жестких магнитных дисках (НЖМД)


Жесткий магнитный диск -это круглая металлическая пластина толщиной 1,5..2мм, покрытая ферромагнитным слоем и специальным защитным слоем. Для записи и чтения используется обе поверхности диска.

Принцип работы

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый).

В большинстве накопителей есть два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр. Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.


Частота вращения НЖМД в первых моделей составляла 3 600 об/мин (т.е. в 10раз больше, чем в накопителе на гибких дисках), в настоящее время частота вращения жестких дисков возросла до 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка "столкнется" с диском. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные "взлеты" и "приземления" головок, а также более серьезные потрясения.

В некоторых наиболее современных накопителях вместо конструкции CSS (Contact Start Stop) используется механизм загрузки/разгрузки, который не позволяет головкам входить в контакт с жесткими дисками даже при отключении питания накопителя. В механизме загрузки/разгрузки используется наклонная панель, расположенная прямо над внешней поверхностью жесткого диска. Когда накопитель выключен или находится в режиме экономии потребляемой мощности, головки съезжают на эту панель. При подаче электроэнергии разблокировка головок происходит только тогда, когда скорость вращения жестких дисков достигнет нужной величины. Поток воздуха, создаваемый при вращении дисков (аэростатический подшипник), позволяет избежать возможного контакта между головкой и поверхностью жесткого диска.

Поскольку пакеты магнитных дисков содержатся в плотно закрытых корпусах и их ремонт не предусмотрен, плотность дорожек на них очень высока - до 96 000 и более на дюйм (Hitachi Travelstar 80GH). Блоки HDA (Head Disk Assembly - блок головок и дисков) собирают в специальных цехах, в условиях практически полной стерильности. Обслуживанием HDA занимаются считанные фирмы, поэтому ремонт или замена каких-либо деталей внутри герметичного блока HDA обходится очень дорого.

Метод записи данных на жесткий магнитный диск
Диаграмма магнитно записи способом модифицированной частотной модуляции: с - синхросигнал

Диаграмма магнитно записи способом модифицированной частотной модуляции: с - синхросигнал

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL-метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается "0", а предыдущий бит был "1", то синхросигнал также не записывается, как и бит данных. Если перед "0" стоит бит "0", то синхросигнал записывается.

Дорожки и секторы

Дорожка - это одно "кольцо" данных на одной стороне диска. Дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля.

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion ), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion ), в котором находится контрольная сумма ( checksum ), необходимая для проверки целостности данных.

Форматирование низкого уровня современных жестких дисков выполняется на заводе, изготовитель указывает только форматную емкость диска. В каждом секторе можно записать 512 байт данных, но область данных - это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт.

Чтобы очистить секторы, в них зачастую записываются специальные последовательности байтов. Префиксы, суффиксы и промежутки - пространство, которое представляет собой разницу между неформатированной и форматированной емкостями диска и "теряется" после его форматирования.

Процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.

Идентификатор (ID) сектора состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID. В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности.

Интервал включения записи следует сразу за байтами CRC ; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа CRC (контрольной суммы) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет два байта, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок ( Error Correction Code - ЕСС ). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Наличие интервала отключения записи позволяет полностью завершить анализ байтов ECC (CRC).

Интервал между записями необходим для того, чтобы застраховать данные из следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи.

Формат записи информации на жестком магнитном диске
Расположение секторов в НЖМД

Расположение секторов в НЖМД

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число (осуществляется правильность считывания идентификатора). Байт флага содержит флаг - указатель состояния дорожки.

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты предназначены для определения и коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды (зависит от схемной реализации адаптера).

Среднее время доступа к информации на НЖМД составляет

tср=tn+0,5/F+tобм,

где tn - среднее время позиционирования;

F - скорость вращения диска;

tобм - время обмена.

Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Форматирование дисков

Различают два вида форматирования диска:

  • физическое, или форматирование низкого уровня;
  • логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Проводник ( Windows Explorer ) или команды DOS FORMAT выполняются обе операции.

Однако для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня Тому, или логическому диску, система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа.

  • Форматирование низкого уровня.
  • Организация разделов на диске.
  • Форматирование высокого уровня.
Форматирование низкого уровня

В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов (префиксы и суффиксы), а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется фиктивными значениями или специальными тестовыми наборами данных.

В первых контроллерах ST-506/412 при записи по методу MFM дорожки разбивались на 17 секторов, а в контроллерах этого же типа, но с RLL -кодированием количество секторов увеличилось до 26. В накопителях ESDI на дорожке содержится 32 и более секторов. В накопителях IDE контроллеры встроенные, и, в зависимости от их типа, количество секторов колеблется в пределах 17-700 и более. Накопители SCSI - это накопители IDE со встроенным адаптером шины SCSI (контроллер тоже встроенный), поэтому количество секторов на дорожке может быть совершенно произвольным и зависит только от типа установленного контроллера.

Практически во всех накопителях IDE и SCSI используется так называемая зонная запись с переменным количеством секторов на дорожке. Дорожки, более удаленные от центра, а значит, и более длинные содержат большее число секторов, чем близкие к центру. Один из способов повышения емкости жесткого диска - разделение внешних цилиндров на большее количество секторов по сравнению с внутренними цилиндрами. Теоретически внешние цилиндры могут содержать больше данных, так как имеют большую длину окружности.


В накопителях, не использующих метод зонной записи, в каждом цилиндре содержится одинаковое количество данных, несмотря на то что длина дорожки внешних цилиндров может быть вдвое больше, чем внутренних. Это приводит к нерациональному использованию емкости запоминающего устройства, так как носитель должен обеспечивать надежное хранение данных, записанных с той же плотностью, что и во внутренних цилиндрах. В том случае, если количество секторов, приходящихся на каждую дорожку, фиксировано, как это бывает при использовании контроллеров ранних версий, емкость накопителя определяется плотностью записи внутренней (наиболее короткой) дорожки.

При зонной записи цилиндры разбиваются на группы, которые называются зонами, причем по мере продвижения к внешнему краю диска дорожки разбиваются на все большее число секторов. Во всех цилиндрах, относящихся к одной зоне, количество секторов на дорожках одинаковое. Возможное количество зон зависит от типа накопителя; в большинстве устройств их бывает 10 и более. Скорость обмена данными с накопителем может изменяться и зависит от зоны, в которой в конкретный момент располагаются головки. Происходит это потому, что секторов во внешних зонах больше, а угловая скорость вращения диска постоянна (т.е. линейная скорость перемещения секторов относительно головки при считывании и записи данных на внешних дорожках оказывается выше, чем на внутренних).

При использовании метода зонной записи каждая поверхность диска уже содержит 545,63 сектора на дорожку. Если не использовать метод зонной записи, то каждая дорожка будет ограничена 360 секторами. Выигрыш при использовании метода зонной записи составляет около 52%.

Обратите внимание на различия в скорости передачи данных для каждой зоны. Поскольку частота вращения шпинделя 7 200 об/мин, один оборот совершается за 1/120 секунды или же 8,33 миллисекунды. Дорожки во внешней зоне (нулевой) имеют скорость передачи данных 44,24 Мбайт/с, а во внутренней зоне (15) - всего 22,12 Мбайт/с. Средняя скорость передачи данных составляет 33,52 Мбайт/с.

Организация разделов на диске

Разделы, создаваемые на жестком диске, обеспечивают поддержку различных файловых систем, каждая из которых располагается на определенном разделе диска.

В каждой файловой системе используется определенный метод, позволяющий распределить пространство, занимаемое файлом, по логическим элементам, которые называются кластерами или единичными блоками памяти. На жестком диске может быть от одного до четырех разделов, каждый из которых поддерживает файловую систему какого-нибудь одного или нескольких типов. В настоящее время PC-совместимые операционные системы используют файловые системы трех типов.

FAT (File Allocation Table - таблица размещения файлов). Это стандартная файловая система для DOS, Windows 9х и Windows NT. В разделах FAT под DOS допустимая длина имен файлов - 11 символов (8 символов собственно имени и 3 символа расширения), а объем тома (логического диска) - до 2 Гбайт. Под Windows 9х/Windows NT 4.0 и выше допустимая длина имен файлов - 255 символов.

С помощью программы FDISK можно создать только два физических раздела FAT на жестком диске - основной и дополнительный, а в дополнительном разделе можно создать до 25 логических томов. Программа Partition Magic может создавать четыре основных раздела или три основных и один дополнительный.

FAT32 (File Allocation Table, 32-bit - 32-разрядная таблица размещения файлов). Используется с Windows 95 OSR2 (OEM Service Release 2), Windows 98 и Windows 2000. В таблицах FAT 32 ячейкам размещения соответствуют 32-разрядные числа. При такой файловой структуре объем тома (логического диска) может достигать 2 Тбайт (2 048 Гбайт).

NTFS (Windows NT File System - файловая система Windows NT). Доступна тольков Windows NT/2000/XP/2003. Длина имен файлов может достигать 256 символов, размер раздела (теоретически) - 16 Эбайт (16^1018 байт). NTFS обеспечивает дополнительные возможности, не предоставляемые другими файловыми системами, например средства безопасности.

После создания разделов необходимо выполнить форматирование высокого уровня с помощью средств операционной системы.

Форматирование высокого уровня

При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома ( Volume Boot Sector - VBS ), две копии таблицы размещения файлов ( FAT ) и корневой каталог ( Root Directory ). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже "обходит", во избежание проблем, дефектные участки на диске. В сущности, форматирование высокого уровня - это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов.

Марат Хабибуллин
Марат Хабибуллин
Валерий Хан
Валерий Хан