Опубликован: 24.01.2007 | Доступ: свободный | Студентов: 3341 / 849 | Оценка: 4.27 / 3.95 | Длительность: 13:37:00
ISBN: 978-5-9556-0090-1
Лекция 9:

Технология MPLS

< Лекция 8 || Лекция 9: 123 || Лекция 10 >
Аннотация: Рассмотрены принципы MPLS, краткая история MPLS, основы архитектуры, классы эквивалентности пересылки FEC, коммутируемые по меткам тракты LSP.

Основное достоинство TCP/IP – его многофункциональность и гибкость. Вот уже три десятка лет этот протокол является основным для сети Internet, объединяющей сейчас более 500 миллионов пользователей. За это время семейство TCP/IP, с одной стороны, пополнилось протоколами прикладного уровня, (такими как HTTP – гипертекстовый протокол, SMTP – почтовый протокол, FTP – протокол пересылки файлов и многие другие) а с другой – обрело совместимость со всеми популярными стандартами физического, канального и сетевого уровней, в том числе и X.25. Однако широкие возможности сети TCP/IP не отменяют ее недостатки. Основные из них – это проблемы безопасности и гарантии качества связи. И если задачу по обеспечению безопасности IP-сети еще можно решить, используя различные механизмы шифрования и защиты (например стандарты IPSec), то проблема отсутствия гарантированной скорости передачи данных, которую требуют такие чувствительные к задержкам приложения, как системы передачи голоса и видео, пока остается нерешенной.

Что касается протокола X.25, то в нем изначально была заложена высокая надежность. Когда X.25 создавался, преобладали аналоговые системы передачи данных и медные линии связи. Стремясь нивелировать невысокое качество каналов того времени, стандарт использует систему обнаружения и коррекции ошибок, что существенно повышает надежность связи, но зато замедляет общую скорость передачи данных. Кроме того, каждый коммутатор, через который проходит пакет информации, выполняет анализ его содержимого, что также требует времени и больших процессорных мощностей. С появлением оптоволоконных сетей столь высокие требования надежности, реализуемые X.25, стали излишними – достоинство протокола превратилось в его недостаток. Скорость передачи по протоколу Х.25 не превышает 64 Кб/с.

Протоколом, призванным исправить недостатки X.25, стал Frame Relay. Он использует тот же принцип виртуальных каналов, однако анализ ошибок осуществляется только на пограничных точках сети, что привело к существенному увеличению скорости (в настоящее время – до 45 Мб/с ). Существенным достоинством протокола стала возможность приоритезации разнородного трафика (включая данные, голос и видео), то есть пакетам различных приложений могут предоставляться различные классы обслуживания, благодаря чему пакеты с более высоким приоритетом доставляются "вне очереди". Эти преимущества Frame Relay были развиты при создании технологии асинхронной передачи (АТМ).

Протокол ATM разбивает весь трафик на пакеты строго фиксированной длины (их называют ячейками), которые асинхронно мультиплексируются в единый цифровой тракт в соответствии с присвоенным приоритетом. Благодаря малой длине ячеек (53 байта), можно организовать одновременную передачу потока данных сразу нескольких служб, критичных ко времени доставки – ячейки с данными различных приложений будут вставляться в поток попеременно, обеспечивая каждому приложению необходимую скорость обмена данными. Технология ATM обеспечивает совместный пропуск трафика на скоростях от 1,5 Мб/с до 40 Гб/с. Как Frame Relay, так и ATM обеспечивают высокую степень безопасности — благодаря тому, что весь трафик в магистральной сети не маршрутизируется, а коммутируется на основе локальных меток DLCI (Frame Relay) или VPI/VCI (АТМ) по виртуальным каналам, к которым несанкционированный пользователь не может подключиться, не изменив таблицы коммутации узлов сети.

Однако, при создании сетей с большим количеством точек доступа по виртуальным каналам, тот самый, "телефонный" принцип соединения, заложенный еще в технологии X.25 начинает доставлять определенные неудобства пользователям. Виртуальные сети (VPN) на основе протоколов Frame Relay и ATM становятся слишком громоздкими и трудно управляемыми. Действительно, чтобы обеспечить связь "каждый с каждым" необходимо выполнить операции по конфигурированию каждого канала. Сколько? Количество виртуальных каналов можно посчитать по формуле N*(N – 1)/2, где N – количество точек доступа. Допустим, что у компании 50 подразделений. В таком случае ей придется организовать 2450 двунаправленных каналов или 4900 однонаправленных. То есть при увеличении числа точек доступа вероятность ошибки в конфигурировании сети возрастает в квадратичной прогрессии. Да и стоить такая сеть будет немало, ведь операторы обычно требуют оплату в зависимости от количества каналов. Построение же сети на основе протокола ATM является и само по себе достаточно дорогой технологией, не считая необходимости адаптации оконечного оборудования к ATM. Поэтому сейчас этот протокол используется в основном для предоставления услуг на магистральном уровне, для передачи больших объемов информации.

По данным операторов сетей, до 90% от информации, пересылаемой в сетях Frame Relay и ATM, составляет IP-трафик. Таким образом, абсолютно логичной выглядит идея объединить в одной технологии те преимущества, что дает протокол IP, одновременно предоставляя гарантию качества и надежность протоколов ATM и Frame Relay.

В 1996 году Ipsilon, Cisco, IBM и несколько других компаний объединили свои фирменные разработки и создали технологию многопротокольной коммутации на основе меток ( MPLS – Multiprotocol Label Switching ). Основная идея разработки состояла в том, чтобы реализовать возможность передачи трафика по наименее загруженным маршрутам IP-сети и обеспечить легкость конфигурирования VPN с одновременной поддержкой гарантии качества передачи, а также присвоения приоритетов различным видам трафика.

Введение в MPLS

Многопротокольная коммутация по меткам MPLS – технология, разработанная рабочей группой по созданию интегрированных услуг IETF. Это новая архитектура построения магистральных сетей, которая значительно расширяет имеющиеся перспективы масштабирования, повышает скорость обработки трафика и предоставляет огромные возможности для организации дополнительных услуг.

Технология MPLS сочетает в себе возможности управления трафиком, присущие технологиям канального уровня, и масштабируемость и гибкость протоколов, характерные для сетевого уровня. Являясь результатом слияния механизмов разных компаний, она впитала в себя наиболее эффективные решения каждой. MPLS соединила в себе надежность ATM, удобные и мощные средства доставки и обеспечения гарантированного качества обслуживания IP-сетей, — такая интеграция сетей позволяет получить дополнительную выгоду из совместного использования протоколов IP и ATM.

Главная особенность технологии MPLS – отделение процесса коммутации пакета от анализа IP-адреса в его заголовке, что позволяет осуществлять коммутацию пакетов значительно быстрее. В соответствии с протоколом MPLS маршрутизаторы и коммутаторы присваивают на каждой точке входа в таблицу маршрутизации особую метку и сообщают эту метку соседним устройствам.

Наличие таких меток позволяет маршрутизаторам и коммутаторам, поддерживающим технологию MPLS, определять следующий шаг в маршруте пакета без выполнения процедуры поиска адреса. На сегодняшний день существуют три основные области применения MPLS:

  • управление трафиком;
  • поддержка классов обслуживания (CoS);
  • организация виртуальных частных сетей (VPN).

Расположение технологии MPLS в семиуровневой модели ВОС показано на рис. 9.1.

Плоскости MPLS

Рис. 9.1. Плоскости MPLS

Сетевой уровень – это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" – это, по сути, независимый сетевой кабель (иногда называемый сегментом). Так как две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, а также вопросы упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

"Multiprotocol" в названии технологии означает "многопротокольный". Это говорит о том, что технология MPLS применима к любому протоколу сетевого уровня, т.е. MPLS – это своего рода инкапсулирующий протокол, способный транспонировать информацию множества других протоколов высших уровней модели OSI. Таким образом, технология MPLS остается независимой от протоколов уровней 2 и 3 в сетях IP, ATM и Frame Relay, а также взаимодействует с существующими протоколами маршрутизации, такими как протокол резервирования ресурсов RSVP или сетевой протокол преимущественного выбора кратчайших маршрутов OSPF.

Представленная на рис. 9.1 плоскость пересылки данных MPLS не образует полноценного уровня, она "вклинивается" в сети IP, ATM или Frame Relay между 2-м и 3-м уровнями модели OSI, оставаясь независимой от этих уровней. Можно сказать, что одновременное функционирование MPLS на сетевом уровне и на уровне звена данных приводит к образованию так называемого уровня 2.5, где, собственно, и выполняется коммутация по меткам.

Основные понятия

Комитет IETF определил три основных элемента технологии MPLS:

  • метка;
  • FEC – класс эквивалентности пересылки;
  • LSP – коммутируемый по меткам тракт;

Рассмотрим каждый из них подробно.

< Лекция 8 || Лекция 9: 123 || Лекция 10 >
Нияз Сабиров
Нияз Сабиров

Здравствуйте. А уточните, пожалуйста, по какой причине стоимость изменилась? Была стоимость в 1 рубль, стала в 9900 рублей.

Елена Сапегова
Елена Сапегова

для получения диплома нужно ли кроме теоретической части еще и практическую делать? написание самого диплома требуется?