Уральский государственный экономический университет
Опубликован: 24.04.2013 | Доступ: свободный | Студентов: 2956 / 1139 | Длительность: 06:24:00
Специальности: Математик, Физик
Дополнительный материал 1:

Встроенные функции MathCAD

< Лекция 5 || Дополнительный материал 1: 12

Часто используемые функции

augment(A,B) - Возвращает матрицу, сформированную путем размещения массива В справа от массива А. А и В должны иметь одинаковое число строк:

A:=\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix}
B:=\begin{pmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \\ 7 & 8  \end{pmatrix}\\
augment (A,B)=\begin{pmatrix} 1 & 2 & 3 & 1 & 2\\ 4 & 5 & 6 & 3 & 4 \\ 7 & 8 & 9 & 5 & 6 \\ 10 & 11 & 12 & 7 & 8 \end{pmatrix}

ceil(y) – возвращает наименьшее целое, большее или равное y. Значение y должно быть вещественным числом:

ceil(5.9)=6\\ ceil(5.1)=6

cols(A) – число столбцов матрицы А.

csort(B,n) – сортирует строки матрицы В таким образом, чтобы расположить элементы столбца n в порядке возрастания. Нумерация столбцов по умолчанию начинается с нуля:

A:=\begin{pmatrix} 11 & 3 & 24 \\ 11 & 2 & 4 \\ 8 & 5 & 2\end{pmatrix}
csort(A,2)=\begin{pmatrix} 8 & 5 & 2 \\ 11 & 2 & 4 \\ 1 & 3 & 24 \end{pmatrix}\\

eigenvals(A) – определяет вектор собственных значений для квадратной матрицы А:

A:=\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}
eigenvals(A)=\begin{pmatrix} 16.117 \\ -1.117 \\ 0 \end{pmatrix}\\

find(x,y,…) – возвращает значения x,y,…, удовлетворяющие ограничениям: равенствам или неравенствам, заданным в блоке given решения уравнений. Число уравнений должно равняться числу неизвестных.

floor(y) – возвращает наибольшее целое, меньшее или равное y. Значение y должно быть вещественным числом:

floor(5.1)=5\\ floor(5.9)=5

identity(n) – создает единичную матрицу размером

n \times n
, в которой диагональные элементы равны 1, а остальные элементы равны 0:

length(v) длина вектора v.

max(v) – максимальный по значению элемент вектора v.

min(v) – минимальный по значению элемент вектора v.

maximize(f,v) – возвращает вектор размерности n, который обеспечивает функции f максимальное значение. Функция f – функция n переменных; вектор v – вектор начальных приближений ответа;

minimize(f,v) - возвращает вектор размерности n, который обеспечивает функции f минимальное значение. Обращение аналогично функции Maximize.

mean(M) – среднее арифметическое элементов вектора или матрицы.

median(v) медиана вектора. Элементы вектора должны быть заданы в порядке возрастания:

rbeta (m, s 1, s2)Возвращает вектор m случайных чисел, имеющих бэта-распределение. s_1, s_2 > 0 есть параметры формы.

rbinom (m, n, p) Возвращает вектор m случайных чисел, имеющих биномиальное распределение. 0 \le p \le 1. n есть натуральное число.

rgamma (m, s) Возвращает вектор m случайных чисел, имеющих гамма- распределение, s > 0 есть параметр формы.

rgeom (m, p) Возвращает вектор m случайных чисел, имеющих геометрическое распределение. 0 \le p \le 1.

rlogis (m, l, s) Возвращает вектор m случайных чисел, имеющих логистическое распределение, в котором l является п а раметром расположения, а s > 0 есть параметр масштаба.

rnorm (m,l, s) Возвращает вектор m случайных чисел, имеющих нормальное распределение. s > 0.

rpois (m,d) Возвращает вектор m случайных чисел, имеющих распределение Пуассона. d > 0.

rt (m, d) Возвращает вектор m случайных чисел, имеющих t-распределение Стьюдента. d > 0.

runif (m, a, b) Возвращает вектор m случайных чисел, имеющих равномерное распределение, в котором b и a являются граничными точками интервала. a < b.

rnd (x) Возвращает равномерно распределенное случайное число между 0 и x. Эквивалент runif (1, 0, x).

round(y,n) – округляет вещественное число y до n знаков справа от десятичной точки. Если n отсутствует, то y округляется до ближайшего целого числа. Если n<0, то y округляется до n знаков слева от десятичной точки.

rows(A) – число строк матрицы А.

rsort(B,n) – сортирует столбцы матрицы В таким образом, чтобы расположить элементы строки n в порядке возрастания:

A:=\begin{pmatrix} 3 & 1 & 2 \\ 5 & 8 & 4 \\ 1 & 6 & 1\end{pmatrix}
rsort(B,1)=\begin{pmatrix} 2 & 3 & 1 \\ 4 & 5 & 6 \\ 1 & 1 & 6 \end{pmatrix}\\

Нумерация строк по умолчанию начинается с нуля.

submatrix(M,ir,jr,ic,jc) – подматрица, состоящая из элементов матрицы М, содержащихся в строках от ir до jr и столбцах от ic до jc:

M:=\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20\\ 21 & 22 & 23 & 24 & 25 \end{pmatrix}

submatrix (M,1,3,2,4):=\begin{pmatrix} 8 & 9 & 10\\ 13 & 14 & 15\\ 18 & 19 & 20 \end{pmatrix}\\
< Лекция 5 || Дополнительный материал 1: 12