Программирование для встроенных систем
3.1. Введение
В современном мире все большее распространение получают системы на основе встраиваемых процессоров, предназначенных для эффективного выполнения узкого класса задач в условиях жестких ограничений на соотношение производительности, энергопотребления и размера. Такие системы можно встретить практически в каждом электронном устройстве, начиная от бытовой техники и кончая самолетами и военными комплексами. При этом большую популярность приобретает подход к построению встраиваемых систем на основе готовых типовых решений, когда для исполнителей и систем управления выбираются существующие на рынке производительные контроллеры и с их помощью как из кирпичиков собираются новые устройства. При таком подходе один и то же контроллер повторно используется в системах различного назначения, существенно сокращая затраты на проектирование. При этом использование в качестве исполнителей специализированных для каждой системы расширений обеспечивает высокую техническую эффективность в смысле баланса указанных выше показател ей.
3.2. Общие принципы
В процессе создания встраиваемых систем важнейшую роль играет инструментарий кросс-разработки, позволяющий выполнять разработку, отладку и профилирование программ для целевой системы с использованием инструментальной машины с отличной от целевой архитектурой. Основными компонентами такого инструментария являются ассемблер, компоновщик, симулятор, отладчик и профилировщик. В качестве инструментальной машины, как правило, выступает обычная рабочая станция. В отличие от производства реальных микросхем, для построения кросс-инструментария достаточно некоторого высокоуровневого описания целевой системы - прежде всего структуры памяти/регистров и системы команд с временными характеристиками исполнения. Это делает возможным раннее создание инструментария кросс-разработки еще в процессе проектирования аппаратуры. Использование кросс-инструментария на этом этапе играет ключевую роль при решении следующих задач:
- Прототипирование целевой аппаратуры и исследование проектных альтернатив (design space exploration) - разработка набора типовых тестов (т.е. программ для целевой машины), их запуск и профилирование на различных вариантах аппаратуры позволяет получать оценки эффективности того или иного проектного варианта и принимать решения о выработке новых улучшений, например, оптимизации системы команд ядра, добавлении / удалении тех или иных функциональных блоков, регистров и сопроцессоров.
- Раннее создание приложений - программное обеспечение для целевой платформы должно быть создано и предварительно отлажено еще до появления реальной аппаратуры. Это необходимо для сокращения времени выхода на рынок полного решения в виде "аппаратура + программы".
- Верификация спецификаций аппаратуры - использование построенного кросс-симулятора позволяет проводить его взаимную верификацию с симуляторами. Такая верификация играет важную роль в процессе финального обеспечения качества перед запуском аппаратуры в производство.
Конечно, важно, чтобы после завершения проектирования аппаратуры полученные кросс-инструменты были пригодны для собственно производственного применения при дальнейшей разработке реальных приложений.
Обобщенная схема проектирования встраиваемых систем
Рассмотрим известную обобщенную схему проектирования встраиваемой системы.
На первом этапе происходит определение требований к системе. Определяются необходимые функциональные характеристики системы и задаются ограничения. Типовыми ограничениями являются быстродействие, энергопотребление, размер и стоимость изготовления кристаллов в рамках заданного технологического процесса производства микросхем.
На следующем этапе выполняется декомпозиция системы на аппаратные и программные компоненты (HW/SW partitioning). Принимаются решения об общей структуре системы (в первую очередь, число и характеристики вычислительных блоков) и выполняется отображение требуемой функциональности на программные и аппаратные части.
Далее процесс разделяется на две ветви - для проектирования программных и аппаратных компонентов. Выходом аппаратной ветви являются модели аппаратуры. В этой ветви принимаются решения об архитектуре выделенных в системе аппаратных вычислительных устройств. Для программируемых компонентов определяется состав функциональных блоков (включая внешние модули расширений для специфических вычислений), структура памяти (включая регистры) и система команд. Результатом проектирования программной части являются модели программных компонентов, совместимые с соответствующими аппаратными моделями.
Процесс носит итеративный характер, и точность описания моделей на каждой итерации постепенно повышается от высокоуровневых функциональных описаний до синтезируемых спецификаций аппаратуры и машинных кодов программ, соответствующих этой аппаратуре. Каждая итерация заканчивается интеграцией результатов программной и аппаратных ветвей, моделированием полученной системы, проверкой функциональной корректности и сбором соответствующих оценок ключевых параметров для их анализа с целью дальнейшей оптимизации. На основании полученных таким образом оценок принимаются решения о пересмотре декомпозиции между программными и аппаратными компонентами, о конкретных изменениях программ и аппаратуры, например, добавлении/удалении вычислительных блоков или оптимизации системы команд. Цикл повторяется до получения конкретных спецификаций программ и аппаратуры, которые совместно задают встраиваемую систему, удовлетворяющую всем заданным требованиям. Затем проводится верификация спецификаций, и цикл проектирования заверша ется подготовкой отчуждаемого продукта, пригодного для интеграции в более крупные проекты "систем на чипе" (SoC) или для запуска в отдельное производство. Такой продукт обычно включает в себя:
- синтезируемые RTL (register transfer level) описания аппаратуры (обычно на VHDL/Verilog);
- исходные (на С/ассемблере) и машинные (firmware) коды базовых системных и прикладных программ для целевой аппаратуры;
- набор инструментов кросс-разработки (среда программирования, см. подраздел 1.2) для создания и отладки новых программ;
- документацию для программистов (справочники по архитектуре системы, по системе команд, по поставляемому системному программному обеспечению и различным библиотекам, по среде программирования).
Существует много различных методов и средств автоматизации проектирования аппаратуры. В случае встраиваемых систем огромное внимание уделяется задаче оптимального разбиения системы на аппаратные и программные компоненты (HW/SW partitioning and codesign). Однако в данной главе ограничимся только рассмотрением создания и использования (кроме собственно основного назначения для разработки реальных программ) кросс-инструментария как средства получения дополнительных данных для поддержки принятия проектных решений в процессе проектирования аппаратуры (см. следующие разделы). Конкретные методы использования таких данных выходят за рамки данной статьи.