Опубликован: 01.06.2007 | Уровень: специалист | Доступ: платный | ВУЗ: Московский государственный университет путей сообщения
Лекция 5:

Стратегии обучения и самообучения

< Лекция 4 || Лекция 5: 123 || Лекция 6 >

Пусть в процессе эксплуатации обученной сети выяснилось, что ситуации (эталоны) А1&B1&C1 и A1&B1&C3, в дополнение к ранее предусмотренным, не только возможны, но требуют того же решения R1. Это означает, что обобщенный эталон A1&B1&C2&C4 мы должны расширить до подобного эталона A1&B1&С1&C2&C3&C4, требующего решения R1. То есть нам необходимо построить путь возбуждения (трассы) B1, A1, C1, C2, C3, C4 -> Вых1. Однако при его построении мы не хотим изменять уже ранее построенный путь возбуждения B1, A1, C2, C4 -> Вых1.

Значит, надо проложить трассы, дополнить сеть путем возбуждения C1, C3 -> Вых1. При этом нам бы хотелось максимально объединить, пересечь, слить этот путь с уже построенным ранее путем возбуждения, ведущим в Вых1.

Преследуя эту цель, мы не должны допустить слияния, влияния этого пути на пути возбуждения, ведущие в другие нейроны выходного слоя. Такая опасность кроется в естественном желании переиспользования нейронов. Ведь слияние двух путей возбуждения заключается в том, что у некоторых нейронов следует повысить веса синапсических связей (скажем, положить равным единице, вместо нуля, окрасить в красный цвет). То есть некоторые нейроны могут стать преемниками возбуждения большего, чем прежде, числа нейронов. А если эти нейроны использовались для получения других решений?

Здесь важно сделать Замечание в дополнение к алгоритму трассировки, рассмотренному в "Трассировка нейронной сети" :

целесообразно при переиспользовании нейронов, возникающем при последовательном анализе обобщенных эталонов , фиксировать информацию: участвует ли данный нейрон лишь в одном пути возбуждения - к единственному нейрону выходного слоя и к какому именно, или к более чем к одному нейрону выходного слоя. И этого будет вполне достаточно для ликвидации тревог.

Продолжим рассмотрение примера, ведущее к обобщению.

Для нового обобщенного эталона на основе матрицы S, так же, как мы это делали в предыдущем разделе, построим (рис. 5.3) матрицу S*[B1, A1, C1, C2, C3, C4 -> Вых1].

В соответствии с правилом ее построения в ней представлены лишь те нейроны, для которых число единиц в строке равно соответствующему значению m. Для каждой строки, содержащей единичные элементы, указано, используется ли нейрон для получения единственного решения и какого (признак Выхi ), или не единственного (признак отсутствует).

Матрица следования для обучения уточненному эталону

Рис. 5.3. Матрица следования для обучения уточненному эталону

Исключим из построенной матрицы строки и столбцы, соответствующие нейронам, участвующим в путях возбуждения, не ведущих в Вых1 (рис. 5.4). (В общем случае в матрице могли сохраниться строки, содержащие нулевые веса.)

Шаг преобразования матрицы следования

Рис. 5.4. Шаг преобразования матрицы следования

"Спускаемся" по столбцу, соответствующему нейрону С1, и в строке, не являющейся входом, находим, если таковой имеется, первый нулевой элемент. Полагаем его равным единице и отражаем введенное изменение в матрице S. Если нулевого элемента в столбце не нашлось, находим первый "пустой" элемент (или отмеченный транзитивной связью - все равно) и полагаем его равным единице. Этим мы вводим дополнительную связь, отраженную в матрице S. В данном случае такой связью с единичным весом является связь С1 -> 2.

То же проделываем с нейроном С3, введя дополнительную связь с единичным весом С3 -> 2 (рис. 5.5).

Шаг преобразования матрицы следования

Рис. 5.5. Шаг преобразования матрицы следования

Отметим, что наше решение основано на эвристике, и место появления новых возбужденных связей может быть оспорено. Например, могли быть построены связи С1-> 2, С3 -> 9, или С1-> Вых1, С3 -> 9, или С1-> 9, С3-> Вых1, и т.д.

Мы не приводим еще более усложнившегося рис. 5.1 уточненной сети, предоставив читателю возможность проверить усвоение материала с помощью легкого нажатия красным карандашом прямо в книжке в направлении стрелок, которые исходят из кружочков, помеченных символами С1 и С3, и входят в кружок, помеченный цифрой 2. Однако намек на такое уточнение делаем на рис. 5.6.

Полностью обученная нейросеть (намек)

Рис. 5.6. Полностью обученная нейросеть (намек)
< Лекция 4 || Лекция 5: 123 || Лекция 6 >
Эльвира Герейханова
Эльвира Герейханова

Раньше это можно было зделать просто нажав на тест и посмотреть результаты а сейчас никак

Елена Лобынцева
Елена Лобынцева
Помогите разобраться как можно подобрать НС для распознавания внутренней области выпуклого многоугольника?
Дмитрий Степанов
Дмитрий Степанов
Россия, Москва, МГТУ им. Баумана, 2006
Дмитрий Степаненко
Дмитрий Степаненко
Россия