Опубликован: 24.08.2004 | Уровень: специалист | Доступ: платный | ВУЗ: Московский физико-технический институт
Лекция 13:

Система управления вводом-выводом

Прямой доступ к памяти (Direct Memory Access – DMA)

Использование механизма прерываний позволяет разумно загружать процессор в то время, когда устройство ввода-вывода занимается своей работой. Однако запись или чтение большого количества информации из адресного пространства ввода-вывода (например, с диска) приводят к большому количеству операций ввода-вывода, которые должен выполнять процессор. Для освобождения процессора от операций последовательного вывода данных из оперативной памяти или последовательного ввода в нее был предложен механизм прямого доступа внешних устройств к памяти – ПДП или Direct Memory Access – DMA. Давайте кратко рассмотрим, как работает этот механизм.

Для того чтобы какое-либо устройство, кроме процессора, могло записать информацию в память или прочитать ее из памяти, необходимо чтобы это устройство могло забрать у процессора управление локальной магистралью для выставления соответствующих сигналов на шины адреса, данных и управления. Для централизации эти обязанности обычно возлагаются не на каждое устройство в отдельности, а на специальный контроллер – контроллер прямого доступа к памяти. Контроллер прямого доступа к памяти имеет несколько спаренных линий – каналов DMA, которые могут подключаться к различным устройствам. Перед началом использования прямого доступа к памяти этот контроллер необходимо запрограммировать, записав в его порты информацию о том, какой канал или каналы предполагается задействовать, какие операции они будут совершать, какой адрес памяти является начальным для передачи информации и какое количество информации должно быть передано. Получив по одной из линий – каналов DMA, сигнал запроса на передачу данных от внешнего устройства, контроллер по шине управления сообщает процессору о желании взять на себя управление локальной магистралью. Процессор, возможно, через некоторое время, необходимое для завершения его действий с магистралью, передает управление ею контроллеру DMA, известив его специальным сигналом. Контроллер DMA выставляет на адресную шину адрес памяти для передачи очередной порции информации и по второй линии канала прямого доступа к памяти сообщает устройству о готовности магистрали к передаче данных. После этого, используя шину данных и шину управления, контроллер DMA, устройство ввода-вывода и память осуществляют процесс обмена информацией. Затем контроллер прямого доступа к памяти извещает процессор о своем отказе от управления магистралью, и тот берет руководящие функции на себя. При передаче большого количества данных весь процесс повторяется циклически.

При прямом доступе к памяти процессор и контроллер DMA по очереди управляют локальной магистралью. Это, конечно, несколько снижает производительность процессора, так как при выполнении некоторых команд или при чтении очередной порции команд во внутренний кэш он должен поджидать освобождения магистрали, но в целом производительность вычислительной системы существенно возрастает.

При подключении к системе нового устройства, которое умеет использовать прямой доступ к памяти, обычно необходимо программно или аппаратно задать номер канала DMA, к которому будет приписано устройство. В отличие от прерываний, где один номер прерывания мог соответствовать нескольким устройствам, каналы DMA всегда находятся в монопольном владении устройств.

Логические принципы организации ввода-вывода

Рассмотренные в предыдущем разделе физические механизмы взаимодействия устройств ввода-вывода с вычислительной системой позволяют понять, почему разнообразные внешние устройства легко могут быть добавлены в существующие компьютеры. Все, что необходимо сделать пользователю при подключении нового устройства, – это отобразить порты устройства в соответствующее адресное пространство, определить, какой номер будет соответствовать прерыванию, генерируемому устройством, и, если нужно, закрепить за устройством некоторый канал DMA. Для нормального функционирования hardware этого будет достаточно. Однако мы до сих пор ничего не сказали о том, как должна быть построена подсистема управления вводом-выводом в операционной системе для легкого и безболезненного добавления новых устройств и какие функции вообще обычно на нее возлагаются.

Структура системы ввода-вывода

Если поручить неподготовленному пользователю сконструировать систему ввода-вывода, способную работать со всем множеством внешних устройств, то, скорее всего, он окажется в ситуации, в которой находились биологи и зоологи до появления трудов Линнея [Linnaes, 1789]. Все устройства разные, отличаются по выполняемым функциям и своим характеристикам, и кажется, что принципиально невозможно создать систему, которая без больших постоянных переделок позволяла бы охватывать все многообразие видов. Вот перечень лишь нескольких направлений (далеко не полный), по которым различаются устройства.

  • Скорость обмена информацией может варьироваться в диапазоне от нескольких байтов в секунду (клавиатура) до нескольких гигабайтов в секунду (сетевые карты).
  • Одни устройства могут использоваться несколькими процессами параллельно (являются разделяемыми), в то время как другие требуют монопольного захвата процессом.
  • Устройства могут запоминать выведенную информацию для ее последующего ввода или не обладать этой функцией. Устройства, запоминающие информацию, в свою очередь, могут дифференцироваться по формам доступа к сохраненной информации: обеспечивать к ней последовательный доступ в жестко заданном порядке или уметь находить и передавать только необходимую порцию данных.
  • Часть устройств умеет передавать данные только по одному байту последовательно ( символьные устройства ), а часть устройств умеет передавать блок байтов как единое целое ( блочные устройства ).
  • Существуют устройства, предназначенные только для ввода информации, устройства, предназначенные только для вывода информации, и устройства, которые могут выполнять и ввод, и вывод.

В области технического обеспечения удалось выделить несколько основных принципов взаимодействия внешних устройств с вычислительной системой, т. е. создать единый интерфейс для их подключения, возложив все специфические действия на контроллеры самих устройств. Тем самым конструкторы вычислительных систем переложили все хлопоты, связанные с подключением внешней аппаратуры, на разработчиков самой аппаратуры, заставляя их придерживаться определенного стандарта.

Похожий подход оказался продуктивным и в области программного подключения устройств ввода-вывода. Подобно тому как Линнею удалось заложить основы систематизации знаний о растительном и животном мире, разделив все живое в природе на относительно небольшое число классов и отрядов, мы можем разделить устройства на относительно небольшое число типов, отличающихся по набору операций, которые могут быть ими выполнены, считая все остальные различия несущественными. Мы можем затем специфицировать интерфейсы между ядром операционной системы, осуществляющим некоторую общую политику ввода-вывода, и программными частями, непосредственно управляющими устройствами, для каждого из таких типов. Более того, разработчики операционных систем получают возможность освободиться от написания и тестирования этих специфических программных частей, получивших название драйверов, передав эту деятельность производителям самих внешних устройств. Фактически мы приходим к использованию принципа уровневого или слоеного построения системы управления вводом-выводом для операционной системы (см. рис. 13.1).

Два нижних уровня этой слоеной системы составляет hardware: сами устройства, непосредственно выполняющие операции, и их контроллеры, служащие для организации совместной работы устройств и остальной вычислительной системы. Следующий уровень составляют драйверы устройств ввода-вывода, скрывающие от разработчиков операционных систем особенности функционирования конкретных приборов и обеспечивающие четко определенный интерфейс между hardware и вышележащим уровнем – уровнем базовой подсистемы ввода-вывода, которая, в свою очередь, предоставляет механизм взаимодействия между драйверами и программной частью вычислительной системы в целом.

Структура системы ввода-вывода

Рис. 13.1. Структура системы ввода-вывода

В последующих разделах мы подробнее рассмотрим организацию и функции набора драйверов и базовой подсистемы ввода-вывода.

Федор Антонов
Федор Антонов

Здравствуйте!

Записался на ваш курс, но не понимаю как произвести оплату.

Надо ли писать заявление и, если да, то куда отправлять?

как я получу диплом о профессиональной переподготовке?

Сергей Семёнов
Сергей Семёнов

Здравствуйте.

Подскажите пожалуйста, где можно найти слайды презентаций для лекций?

Зарина Каримова
Зарина Каримова
Казахстан, Алматы, Гимназия им. Ахмета Байтурсынова №139, 2008
Алексей Калаев
Алексей Калаев
Россия, г. Москва