Опубликован: 27.07.2006 | Доступ: свободный | Студентов: 5714 / 1222 | Оценка: 4.37 / 4.06 | Длительность: 13:49:00
ISBN: 978-5-9556-0049-9
Специальности: Программист
Лекция 1:

Основы искусственных нейронных сетей

Лекция 1: 1234 || Лекция 2 >
Аннотация: В лекции рассматриваются общие положения теории искусственных нейронных сетей. Описана структура однослойных и многослойных нейронных сетей, введено понятие обучения нейронной сети и дана классификация алгоритмов обучения.

Биологический прототип

Развитие искусственных нейронных сетей вдохновляется биологией. То есть, рассматривая сетевые конфигурации и алгоритмы, исследователи применяют термины, заимствованные из принципов организации мозговой деятельности. Но на этом аналогия заканчивается. Наши знания о работе мозга столь ограничены, что мало бы нашлось точно доказанных закономерностей для тех, кто пожелал бы руководствоваться ими. Поэтому разработчикам сетей приходится выходить за пределы современных биологических знаний в поисках структур, способных выполнять полезные функции. Во многих случаях это приводит к необходимости отказа от биологического правдоподобия, мозг становится просто метафорой, и создаются сети, невозможные в живой материи или требующие неправдоподобно больших допущений об анатомии и функционировании мозга.

Несмотря на то, что связь с биологией слаба и зачастую несущественна, искусственные нейронные сети продолжают сравнивать с мозгом. Их функционирование часто имеет внешнее сходство с человеческим познанием, поэтому трудно избежать этой аналогии. К сожалению, такие сравнения неплодотворны и создают неоправданные ожидания, неизбежно ведущие к разочарованию.

Нервная система человека, построенная из элементов, называемых нейронами, имеет ошеломляющую сложность. Около 10^{11} нейронов участвуют в примерно 10^{15} передающих связях, имеющих длину метр и более. Каждый нейрон обладает многими свойствами, общими с другими органами тела, но ему присущи абсолютно уникальные способности: принимать, обрабатывать и передавать электрохимические сигналы по нервным путям, которые образуют коммуникационную систему мозга.

На рис. 1.1 показана структура пары типичных биологических нейронов. Дендриты идут от тела нервной клетки к другим нейронам, где они принимают сигналы в точках соединения, называемых синапсами. Принятые синапсом входные сигналы передаются к телу нейрона. Здесь они суммируются, причем одни входы стремятся возбудить нейрон, другие — воспрепятствовать его возбуждению.

Когда суммарное возбуждение в теле нейрона превышает некоторый порог, нейрон возбуждается, посылая по аксону сигнал другим нейронам. У этой основной функциональной схемы много усложнений и исключений, тем не менее, большинство искусственных нейронных сетей моделируют лишь эти простые свойства.

Лекция 1: 1234 || Лекция 2 >