Опубликован: 10.03.2009 | Доступ: свободный | Студентов: 2296 / 280 | Оценка: 4.31 / 4.07 | Длительность: 09:23:00
Тема: Программирование
Специальности: Программист, Архитектор программного обеспечения
Теги:
Дополнительный материал 1:
Приложение
Класс полиномов
TPolinom.h
; #include <vector> using namespace std; template <class A> class Polinom { public: vector<A> Pol; //a0 + a1*x + a2*x^2 + ... + an*x^n public: Polinom(){Pol.resize(1); Pol[0] = 0;} Polinom(A a){Pol.resize(1); Pol[0] = a;} Polinom(int n, A *koef){Pol.resize(n); for(int i = 0; i < n; i++) Pol[i] = koef[i];} Polinom(const Polinom& initPol){Pol = initPol.Pol;} Polinom<A> operator - (); Polinom<A> operator + (Polinom<A>); Polinom<A> operator - (Polinom<A>); Polinom<A> operator * (Polinom<A>); Polinom<A> operator = (Polinom<A>); bool operator == (Polinom<A>); A operator () (A arg); };
TPolinom.cpp
template <class A> Polinom<A> Polinom<A> :: operator + (Polinom<A> add) { Polinom<A> result; Polinom<A> *md; size_t maxdeg, mindeg; if(this->Pol.size() <= add.Pol.size()) md = &add; else md = this; maxdeg = max(this->Pol.size(),add.Pol.size()); mindeg = min(this->Pol.size(),add.Pol.size()); result.Pol.resize(maxdeg); for(unsigned int i = 0; i < mindeg; i++) result.Pol[i] = this->Pol[i] + add.Pol[i]; for(size_t i = mindeg; i < maxdeg; i++) result.Pol[i] = md->Pol[i]; return result; } template <class A> Polinom<A> Polinom<A> :: operator - () { Polinom result; for(uni i = 0; i < this->Pol.size(); i++) result.Pol[i] = -this->Pol[i]; return result; } template <class A> Polinom<A> Polinom<A> :: operator - (Polinom<A> sub) { Polinom result; result = *this + (-sub); return result; } template <class A> Polinom<A> Polinom<A> :: operator * (Polinom<A> mult) { Polinom<A> result; result.Pol.resize(this->Pol.size() + mult.Pol.size() - 1); for(unsigned int i = 0; i < this->Pol.size(); i++) for(unsigned int j = 0; j < mult.Pol.size(); j++) result.Pol[i+j] += this->Pol[i]*mult.Pol[j]; return result; } template <class A> Polinom<A> Polinom<A> :: operator = (Polinom<A> right) { this->Pol = right.Pol; return *this; } template <class A> A Polinom<A> :: operator () (A arg) { size_t n = Pol.size(); A result = Pol[n-1]*arg + Pol[n-2]; for(size_t i = n-1; i > 1; i--) result = result*arg + Pol[i-2]; return result; } template <class A> bool Polinom<A> :: operator == (Polinom<A> comp) { bool result = true; if(Pol.size() != comp.Pol.size()) return false; for(unsigned int i = 0; i < Pol.size(); i++) if(Pol[i] == comp.Pol[i]) continue; else result = false; return result; }
Класс комплексных чисел
Complex.h
#pragma once class Complex { double Re; double Im; public: Complex():Re(0.0),Im(0.0){} Complex(double x, double y):Re(x),Im(y){} Complex(Complex& z){Re=z.Re; Im = z.Im;} ~Complex(){} double GetRe(){return Re;} double GetIm(){return Im;} void SetRe(double x){Re = x;} void SetIm(double y){Im = y;} friend Complex operator * (double op1, Complex& op2); friend Complex operator + (double op1, Complex& op2); friend Complex operator - (double op1, Complex& op2); friend Complex operator / (double op1, Complex& op2); Complex operator * (double op); Complex operator * (Complex& op); Complex operator + (double op); Complex operator + (Complex& op); Complex operator - (double op); Complex operator - (Complex& op); Complex operator / (double op); Complex operator / (Complex& op); void operator = (Complex& op); void operator += (Complex& op); void operator -= (Complex& op); void operator *= (Complex& op); void operator /= (Complex& op); void operator += (double op); void operator -= (double op); void operator *= (double op); void operator /= (double op); bool operator == (Complex& op); Complex operator - (); double Abs(){return Re*Re + Im*Im;} double Arg(){return atan2(Im,Re);} }; Complex exp(Complex z); Complex sin(Complex z); Complex cos(Complex z); Complex pow(Complex z_base, Complex z_pow); Complex ln(Complex z);
Complex.cpp
#include "Complex.h" Complex Complex::operator + (Complex& op) { Complex Res; Res.Re = Re + op.Re; Res.Im = Im + op.Im; return Res; } Complex Complex::operator * (Complex& op) { Complex Res; Res.Re = Re*op.Re - Im*op.Im; Res.Im = Re*op.Im + Im*op.Re; return Res; } Complex Complex::operator * (double op) { return *this*Complex(op,0); } Complex Complex::operator - () { return *this*(-1.0); } Complex operator * (double op1, Complex& op2) { return op2*op1; } Complex Complex::operator + (double op) { return *this + Complex(op,0); } Complex operator + (double op1, Complex& op2) { return op2 + op1; } Complex Complex::operator / (Complex& op) { Complex Res; Res.Re = (Re*op.Re + Im*op.Im)/(op.Re*op.Re + op.Im*op.Im); Res.Im = (Im*op.Re - Re*op.Im)/(op.Re*op.Re + op.Im*op.Im); return Res; } Complex Complex::operator / (double op) { return *this/Complex(op,0); } Complex operator / (double op1, Complex& op2) { return Complex(op1,0)/op2; } Complex Complex::operator - (Complex& op) { return *this + (-op); } Complex Complex::operator - (double op) { return *this - Complex(op,0); } Complex operator - (double op1, Complex& op2) { return Complex(op1,0) - op2; } void Complex::operator = (Complex& op) { Re = op.Re; Im = op.Im; } bool Complex::operator == (Complex& op) { return Re==op.Re && Im==op.Im ? true : false; } void Complex::operator += (Complex& op) { *this = *this + op; } void Complex::operator += (double op) { *this = *this + op; } void Complex::operator -= (Complex& op) { *this = *this - op; } void Complex::operator -= (double op) { *this = *this - op; } void Complex::operator *= (Complex& op) { *this = *this*op; } void Complex::operator *= (double op) { *this = *this*op; } void Complex::operator /= (Complex& op) { *this = *this/op; } void Complex::operator /= (double op) { *this = *this/op; } Complex exp(Complex z) { Complex Res; Res.SetRe(exp(z.GetRe())*cos(z.GetIm())); Res.SetIm(exp(z.GetRe())*sin(z.GetIm())); return Res; } Complex ln(Complex z) { Complex Res; Res.SetRe(log(z.Abs())); Res.SetIm(z.Arg()); return Res; } Complex pow(Complex z_base, Complex z_pow) { if(z_pow == Complex())return Complex(1,0); else return exp(z_base*ln(z_pow)); } Complex sin(Complex z) { Complex Res; Res.SetRe(sin(z.GetRe())*(exp(z.GetIm()) + exp(-z.GetIm()))/2); Res.SetIm(cos(z.GetRe())*(exp(z.GetIm()) - exp(-z.GetIm()))/2); return Res; } Complex cos(Complex z) { Complex Res; Res.SetRe(cos(z.GetRe())*(exp(z.GetIm()) + exp(-z.GetIm()))/2); Res.SetIm(-sin(z.GetRe())*(exp(z.GetIm()) - exp(-z.GetIm()))/2); return Res; }