Опубликован: 30.01.2013 | Доступ: свободный | Студентов: 4076 / 1114 | Длительность: 15:35:00
Тема: Экология
Специальности: Эколог
Лекция 5:

Принципиальные схемы обустройства нефтегазовых объектов

< Лекция 4 || Лекция 5: 12345 || Лекция 6 >

Состав сооружений магистральных нефтепроводов

В состав магистральных нефтепроводов (МН) входят: линейные сооружения, головные и промежуточные перекачивающие насосные станции, резервуарные парки. В состав линейных сооружений входят следующие элементы: трубопровод дальнего транспорта нефти с ответвлениями и лупингами: запорная арматура: переходы через естественные и искусственные препятствия; узлы подключения нефтеперекачивающих станций (НПС); узлы пуска и приема очистных и диагностических устройств; установки электрохимической защиты от коррозии; линии электропередачи и линии связи; средства телемеханики и устройства дистанционного управления запорной арматурой: земляные амбары для аварийного выпуска нефти: пункты подогрева нефти; противопожарные средства; постоянные дороги и указатели ( рис. 5.2).

Собственно трубопровод представляет собой сваренные в непрерывную нитку трубы. Обычно верхнюю образующую магистральных трубопроводов (МТ) заглубляют в грунт на глубину 0,8 м, если иная глубина заложения не диктуется особыми условиями. При прокладке МН в районах с вечномерзлыми грунтами или через болота трубы укладываются на опоры или в искусственные насыпи. Для них применяют цельнотянутые или сварные трубы диаметром 300-1220 мм. Толщина стенок труб определяется проектным давлением, которое может достигать 10 МПа. Помимо магистральных существуют промысловые, технологические и распределительные трубопроводы.

На пересечениях крупных рек трубопроводы утяжеляют грузами или бетонными покрытиями и заглубляют ниже дна реки. Кроме основной нитки перехода через реки укладывают резервную нитку того же диаметра.

Состав сооружений МН

Рис. 5.2. Состав сооружений МН

В зависимости от рельефа трассы на трубопроводе с интервалом 10-30 км устанавливают задвижки для перекрытия участков в случае аварии или ремонта.

Нефтеперекачивающие станции (НПС) располагаются по трассе с интервалом 70-150 км и оборудуются центробежными насосами с электроприводом. Подача (расход) магистральных насосов может достигать 12500 м^3/ч. Головная НПС располагается вблизи нефтяного промысла и отличается от промежуточных наличием резервуарного парка объемом, равным трехсуточной пропускной способности МН. Если длина МН превышает 800 км. его разбивают на эксплуатационные участки длиной 100-300 км. в пределах которых возможна независимая работа насосов. Промежуточные НПС, расположенные на границах эксплуатационных участков, имеют резервуарные парки объемом до 1,5-суточной пропускной способности МН.

На трубопроводах, транспортирующих высокозастывающие и высоковязкие нефти, устанавливают тепловые станции с печами подогрева. Такие трубопроводы имеют теплоизоляционное покрытие.

Затраты на строительство линейной части достигают 80% от общего объема капитальных вложений. Чем больше диаметр труб, тем больше доля стоимости труб в общей стоимости линейной части. При диаметре нефтепровода 320 мм металловложение в проект составляет 60 т/км, при диаметре 1220 мм - 420 т/км. Например, при переходе от диаметра 720 мм на диаметр 1020 мм металловложение увеличивается в 1,8 раза. Поэтому трассы нефтепроводов большого диаметра стремятся максимально спрямить. С увеличением диаметра уменьшаются удельные затраты на перекачку нефти. Примерно 20% капитальных вложений приходится на нефтеперекачивающие станции.

С увеличением рабочего давления и диаметра труб возрастает толщина стенок. При повышении давления увеличивается стоимость единицы длины нефтепровода, однако удельные эксплуатационные затраты при этом уменьшаются. Например, при перекачке нефти со средней скоростью 1,5 м/с по трубам разного диаметра удельный расход энергии (кВт\cdot ч на 1000 т\cdot км) составляет: диаметр 530 мм - 23,6; диаметр 720 мм - 14,8; диаметр 920 мм - 10,6.

В зависимости от прохождения трассы по равнинным участкам или через сложные естественные преграды стоимость сооружения линейной части может увеличиться в несколько раз. После определения оптимального направления трассы проводят выбор площадок для размещения НПС и уточняют на основании гидравлического расчета параметры нефтепровода.

МН подразделяются на четыре класса в зависимости от диаметра трубопровода:

I класс - диаметр свыше 1000 мм;

II класс - от 500 до 1000 мм включительно;

III класс - от 300 до 500 мм включительно;

IV класс - 300 мм и менее.

В зависимости от класса выбираются безопасные расстояния от трубопровода до строений и сооружений.

Установлены также следующие пять категорий участков трубопроводов, которые требуют обеспечения повышенных прочностных характеристик, объема неразрушающего контроля и величины испытательного давления: B, I, II, III, IV. Наиболее высокой и ответственной является категория B.

К последней категории относятся переходы диаметром 1000 мм и более через судоходные и широкие водные преграды, газопроводы внутри компрессорных, газораспределительных станций и подземных хранилищ газа (ПХГ). К участкам IV категории относятся трубопроводы, проходящие по равнинной местности в устойчивых грунтах вдали от строений и сооружений.

Вдоль трассы МТ проходит линия связи, которая имеет в основном диспетчерское назначение. Расположенные вдоль трассы станции катодной и дренажной защиты, а также протекторы защищают трубопроводы от наружной коррозии. По трассе нефтепровода могут сооружаться пункты налива нефти в железнодорожные цистерны. Допустимые радиусы изгиба трубопровода в различных плоскостях определяют из условия прочности и устойчивости положения. На трассе МН через каждые 500 м устанавливаются знаки высотой до 2 м с надписями-указателями .

Конечный пункт нефтепровода - либо сырьевой парк нефтеперерабатывающего завода, либо морская перевалочная нефтебаза, откуда нефть танкерами перевозится потребителям.

Состав сооружений магистральных газопроводов

Система доставки продукции газовых месторождений до потребителей представляет собой единую технологическую цепочку. Газ с месторождений поступает через газосборный пункт по промысловому коллектору на установку подготовки газа, где производится осушка газа, очистка от механических примесей, углекислого газа и сероводорода. Далее газ поступает на головную компрессорную станцию и в магистральный газопровод (МГ).

В состав сооружений магистрального газопровода входят следующие основные объекты ( рис. 5.3):

  • головные сооружения;
  • компрессорные станции (КС);
  • газораспределительные станции (ГРС);
  • подземные хранилища газа (ПХГ);
  • линейные сооружения.
Схема магистрального газопровода

Рис. 5.3. Схема магистрального газопровода

МГ в зависимости от рабочего давления подразделяются:

I класс - от 2,5 до 10 МПа включительно;

II класс - от 1,2 до 2,5 МПа включительно.

На головных сооружениях добываемый газ подготавливается к транспортировке. В первый период разработки месторождений давление газа достаточно велико, поэтому нет необходимости в использовании головной компрессорной станции. Эту станцию строят на более поздних этапах разработки газовых месторождений.

Компрессорные станции (КС) предназначены для перекачки газа от месторождений или подземных хранилищ до потребителя. Кроме того, на КС производится очистка газа от жидких и твердых примесей, а также его осушка.

Объекты КС проектируются в блочно-модульном исполнении и оборудуются центробежными нагнетателями с приводом от газотурбинных установок или электродвигателей. Газотурбинным приводом оснащено более 80% всех КС, а электроприводом — около 20%.

Газоперекачивающие агрегаты (ГПА) предназначены для сжатия природного газа, достаточного для обеспечения его транспортировки с заданными технологическими параметрами. Газоперекачивающие агрегаты размещаются в блок-контейнерах, состоящих из отсеков двигателей (приводов) и нагнетателей. Базовая сборочная единица - блок турбоагрегата и оборудование технологических систем.

Установка охлаждения газа преимущественно состоит из аппаратов воздушного охлаждения (АВО). При компримирова-нии (сжатии) газ нагревается, что приводит к увеличению его вязкости, затрат мощности на перекачку и увеличению продольных напряжений в трубопроводе. Охлаждение газа после его компримирования увеличивает производительность и устойчивость газопровода, ослабляет действие коррозионных процессов. Газ охлаждают водой и воздухом в тешюобменных аппаратах различной конструкции. Конструктивно АВО представляет собой вентилятор с диаметром лопастей до 7 м. Количество АВО определяется теплотехническими расчетами. Рабочая температура охлаждаемой среды на входе в аппарат до 70^{\circ}C, на выходе - до 45^{\circ}C.

Газораспределительные станции (ГРС) сооружают в конце каждого МГ или отвода от него. Высоконапорный газ не может быть непосредственно подан потребителям. На ГРС осуществляется понижение давления газа до требуемого уровня, очистка от механических частиц и конденсата, одоризация и измерение расхода.

К линейным сооружениям относятся собственно МТ, линейные запорные устройства, узлы очистки газопровода, переходы через препятствия, станции противокоррозионной защиты, линии технологической связи, отводы от МГ и сооружения линейной эксплуатационной службы.

Линейные сооружения газопроводов отличаются от аналогичных сооружений нефтепроводов тем, что вместо линейных задвижек используются линейные шаровые краны, расстояние между которыми должно быть не более 30 км. Кроме того, для сбора выпадающего конденсата сооружаются конденсатос-борники. Большая часть газопроводов имеет диаметр от 720 до 1420 мм. Трубы и арматура рассчитаны на рабочее давление до 10 МПа.

При параллельной прокладке двух и более МГ в одном технологическом коридоре предусматривается соединение их перемычками с запорной арматурой. Перемычки размещаются на расстоянии не менее 40 км друг от друга, а также перед компрессорными станциями и после них.

Подземные хранилища газа (ПХГ) служат для компенсации неравномерности газопотребления. Использование подземных структур для хранения газа позволяет существенно уменьшить капиталовложения в хранилища.

Классификация и состав перекачивающих станций

Магистральный нефтепровод (МН) имеет в своем составе головную нефтеперекачивающую станцию (НПС) и промежуточные НПС. Головная НПС предназначена для приема нефти с установок ее подготовки на промысле и закачки в МН. Промежуточные НПС обеспечивают поддержание в трубе напора, достаточного для дальнейшей перекачки нефти ( рис. 5.4). Объекты в составе НПС подразделяются на две группы: основного (технологического) и вспомогательного назначения.

К объектам первой группы относятся: резервуарный парк; подпорная насосная; узел учета нефти с фильтрами; магистральная насосная; узел регулирования давления и предохранительные устройства; камеры пуска и приема очистных и диагностических устройств; технологические трубопроводы с запорной арматурой.

Технологическая схема промежуточной НПС

Рис. 5.4. Технологическая схема промежуточной НПС

К объектам второй группы относятся: понижающая электрическая подстанция с распределительными устройствами; комплекс водоснабжения; комплекс по отводу промышленных стоков; котельная с тепловыми сетями; узел связи: лабораторный корпус; мастерские; пожарное депо; склад и т. д.

На головных НПС осуществляются следующие технологические операции: прием и учет нефти; краткосрочное хранение нефти в резервуарах; внутристанционные перекачки нефти; закачка нефти в МТ; запуск в полость трубопровода очистных и диагностических устройств.

На промежуточных НПС осуществляется увеличение напора транспортируемой нефти. При работе НПС в режиме "из насоса в насос" (конец предыдущего участка трубы МН подключен к линии всасывания насосов) промежуточные НПС не имеют резервуарных парков. В других случаях резервуарные парки имеются. На промежуточных НПС устанавливаются также системы сглаживания волн давления и защиты от гидравлических ударов.

МН разбиваются на эксплуатационные участки протяженностью до 800 км, которые соединяются друг с другом через резервуарные парки, поэтому в течение некоторого времени каждый участок может вести перекачку независимо от соседних участков. Эксплуатационные участки в свою очередь состоят из 3-5 более коротких участков, разделенных промежуточными НПС. которые работают в режиме "из насоса в насос" и гидравлически связаны друг с другом.

Для снижения затрат на сооружение НПС используется метод их блочно-модульного исполнения. Все оборудование станции входит в состав функциональных блоков, монтируется и испытывается на заводе. При этом блочно-модульные НПС могут быть открытого типа, когда насосные агрегаты размещаются под навесом на открытом воздухе.

Важным элементом НПС является узел учета нефти на потоке, который размещают на пути движения нефти из резервуара к нефтепроводу между подпорной и магистральной насосными.

Типичным элементом схемы НПС является узел приема-пуска средств очистки и диагностики внутренней полости нефтепровода. На головных НПС размещаются только камеры пуска, на промежуточных - камеры пуска и камеры приема, на конечных—только камеры приема. Каждое из средств очистки обладает своими преимуществами и недостатками. Например, эластичный шаровой разделитель обладает повышенной проходимостью, способен преодолевать сужения трубы и крутые повороты, но обладает худшими очистными свойствами по сравнению со скребками.

Для приема разделителей с предыдущего участка используют специальную камеру, в которую разделитель поступает вместе с потоком нефти. Для пуска разделителей используется другая камера, из которой разделители вместе с потоком нефти уходят на следующий участок нефтепровода.

Магистральный газопровод (МГ) в своем составе имеет головную и промежуточные компрессорные станции (КС), обеспечивающие расчетную пропускную способность трубопровода ( рис. 5.5).

Технологическая схема промежуточной КС с центробежными нагнетателями

Рис. 5.5. Технологическая схема промежуточной КС с центробежными нагнетателями

В начальный период разработки месторождений давление поступающего природного газа бывает достаточно большим, поэтому необходимость в сооружении головной КС отсутствует. Головную КС строят позднее, уже после ввода МГ в эксплуатацию.

Размещение КС по длине трассы зависит от рабочих параметров МГ. Обычно оно колеблется в пределах 80-150 км.

Головная КС предназначена для приема газа от источников (с промысла), очистки его от пыли и сероводорода, осушки, охлаждения и компримирования - сжатия до рабочего давления.

Для выполнения этих технологических операций в составе головной КС имеются следующие объекты:

  • узел пылеуловителей;
  • узел очистки газа от серы и сероводорода;
  • узел осушки газа, состоящий из цеха низкотемпературной сепарации, холодильной станции, конденсатного парка, насосной для подачи диэтиленгликоля и др.;
  • компрессорный цех: аппарат воздушного охлаждения (АВО);
  • понизительная электроподстанция, если в качестве привода используются электродвигатели;
  • электростанция собственных нужд, если приводом служит газотурбинная установка;
  • оборотная система водоснабжения с градирней;
  • пожарная система водоснабжения с водонапорной башней;
  • система канализации, склады и др.

Промежуточная КС используется для очистки газа от пыли и его компримирования. В состав сооружений промежуточной КС входят:

  • узел подключения КС к МГ, цех очистки газа с системой маслохозяйства:
  • наружная обвязка центробежных нагнетателей;
  • компрессорный цех, оборудованный нагнетателями с приводом от газовых турбин или от электродвигателей. Цех включает в себя насосную оборотного водоснабжения, а также пункт подготовки и редуцирования топливного и пускового газа для КС, оборудованных газовыми турбинами; АВО;
  • электростанция собственных нужд для КС с приводом от газовых турбин;
  • межцеховые технологические трубопроводы газа, воды и масла:
  • открытое и закрытое распределительные устройства на КС с приводом от электродвигателей. ОРУ состоят из силовых понижающих трансформаторов и масляных выключателей. ЗРУ включают в себя пусковую аппаратуру электродвигателей и трансформаторы собственных нужд:
  • контрольно-распределительный пункт (КРП) для редуцирования газа на нужды КС.
< Лекция 4 || Лекция 5: 12345 || Лекция 6 >
Райхан Жуманова
Райхан Жуманова
Если я прошла курс где мой сертификат
Ольга Воробьева
Ольга Воробьева