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About These Lectures

If you want to learn the most fundamental things about

plasma astrophysics with the least amount of time and
effort – and who doesn’t? – this text is for you.

The text is addressed to students without a back-
ground in plasma physics.

It grew from the lectures given at the Moscow Institute

of Physics and Technics (the ‘fiz-tekh’).

A similar full-year course was offered to the students of

the Astronomical Division in the Faculty of Physics at the
Moscow State University over after 1990.

The idea of these lectures is not typical for the majority

of textbooks.

It was suggested by S.I. Syrovatskii that

the consecutive consideration of physical prin-

ciples, starting from the most general ones, and of
simplifying assumptions gives us a simpler descrip-
tion of plasma under cosmic conditions.

On the basis of such an approach the student interested in
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modern astrophysics, its current practice, will find the
answers to two key questions:

1. What approximation is the best one (the simplest but

sufficient) for description of a phenomenon in astro-
physical plasma?

2. How can I build an adequate model for the phe-

nomenon, for example, a flare in the corona of an ac-
cretion disk?

Practice is really important for the theory of astro-

physical plasma.

Related exercises (supplemented to each chapter) serve
to better understanding of plasma astrophysics.

As for the applications, preference evidently is given to
physical processes in the solar plasma.

Why? – Because of the possibility of the all-round ob-
servational test of theoretical models.

For instance, flares on the Sun, in contrast to those

on other stars, can be seen in their development.

We can obtain a sequence of images during the flare’s

evolution, not only in the optical and radio ranges but also
in the EUV, soft and hard X-ray, gamma-ray ranges.

For beginning students, who may not know in which sub-

fields of astrophysics they wish to specialize,
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it is better to cover a lot of fundamental theories
thoroughly than to dig deeply into any particular

astrophysical subject or object,

even a very interesting one, for example black holes.

Astrophysicists of the future will need tools that allow
them to explore in many different directions.

Moreover astronomy of the future will be, more than
hitherto, precise science similar to mathematics and phy-

sics.

Figure 1: The first vol-
ume of the book cov-

ers the basic princi-
ples and main prac-

tical tools required for
work in plasma astro-

physics.

see http://www.springer/com/
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http://adsabs.harvard.edu/

The second volume “Plasma Astrophysics, Part II, Re-

connection and Flares” represents the basic physics of the
magnetic reconnection effect and the flares of electro-

magnetic origin in the solar system, relativistic objects, ac-
cretion disks, their coronae.

Never say: “It is easy to show...”.



Chapter 1

Particles and Fields: Exact
Self-Consistent Description

There exist two ways to describe exactly the

behaviour of a system of charged particles in elec-
tromagnetic and gravitational fields.

1.1 Liouville’s theorem

1.1.1 Continuity in phase space

Let us consider a system of N interacting particle.

Without much justification, let us introduce the distri-
bution function

f = f(r,v, t) (1.1)

for particles as follows.

We consider the six-dimensional (6D) space called phase

space X = { r,v} shown in Fig. 1.1.
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Figure 1.1: The 6D phase space X. A small volume dX at a
point X.

The number of particles present in a small volume

dX = d 3r d 3v at a point X at a moment of time t is defined
to be

dN(X, t) = f(X, t) dX. (1.2)

Accordingly, the total number of the particles at this mo-

ment is

N(t) =
∫
f(X, t) dX ≡

∫ ∫
f(r,v, t) d 3r d 3v . (1.3)

If, for definiteness, we use the Cartesian coordinates,

then

X = {x, y, z, vx, vy, vz }
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is a point of the phase space (Fig. 1.2) and

Ẋ = { vx, vy, vz, v̇x, v̇y, v̇z } (1.4)

is the velocity of this point in the phase space.

Suppose the coordinates and velocities of the particles
are changing continuously – ‘from point to point’, i.e. the
particles move smoothly at all times.

So the distribution function f(X, t) is differentiable.

Moreover we assume that this motion of the particles in
phase space can be expressed by the continuity equation:

∂f

∂t
+ div

X
fẊ = 0

(1.5)

or
∂f

∂t
+ divr fv + divv f v̇ = 0 .

Equation (1.5) expresses the conservation law for the
particles, since the integration of (1.5) over a volume U

enclosed by the surface S in Fig. 1.2 gives

∂

∂t

∫
U

f dX +
∫
U

div
X
fẊ dX =

by virtue of the Ostrogradskii-Gauss theorem
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Figure 1.2: The 6D phase space X. The volume U is enclosed
by the surface S.

=
∂

∂t
N(t)

∣∣∣∣
U

+
∫
S

fẊ dS =
∂

∂t
N(t)

∣∣∣∣
U

+
∫
S

J ·dS = 0 . (1.6)

Here

J = fẊ (1.7)

is the particle flux density in the phase space.

Thus

a change of the particle number in a given volume U
of the phase spaceX is defined by the particle flux
through the boundary surface S.

The reason is clear.
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There are no sources or sinks for the particles inside
the volume.

Otherwise the source and sink terms must be added to

the right-hand side of Equation (1.5).

1.1.2 The character of particle interactions

Let us rewrite Equation (1.5) in another form in order to
understand the meaning of divergent terms.

The first of them is

divr fv = f divr v + (v · ∇r) f = 0 + (v · ∇r) f ,

since r and v are independent variables in the phase spaceX.

The second divergent term is

divv f v̇ = f divv v̇ + v̇ · ∇v f .

So far no assumption has been made as to the character

of particle interactions.
It is worth doing here.

Let us restrict our consideration to the interactions with

divv v̇ = 0 ,
(1.8)

then Equation (1.5) takes the following form

∂f

∂t
+ v · ∇r f +

F

m
· ∇v f = 0
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or
∂f

∂t
+ Ẋ∇

X
f = 0 , (1.9)

where

Ẋ =

{
vx, vy, vz,

Fx
m
,
Fy
m
,
Fz
m

}
. (1.10)

So we ‘trace’ the phase trajectories of particles when they
move under action of a force field F(r,v, t).

Thus we have found Liouville’s theorem in the following
formulation:

∂f

∂t
+ v · ∇r f +

F

m
· ∇v f = 0 . (1.11)

Liouville’s theorem: The distribution function
remains constant on the particle phase trajectories

if condition (1.8) is satisfied.

We call Equation (1.11) the Liouville equation.

The first term in Equation (1.11), the partial time deriva-
tive ∂f/∂t , characterizes a change of the distribution func-

tion f(t, X) at a given point X in the phase space with
time t.

Define also the Liouville operator

D

Dt
≡ ∂

∂t
+ Ẋ

∂

∂X
≡ ∂

∂t
+ v · ∇r +

F

m
· ∇v . (1.12)
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This operator is just the total time derivative following a
particle motion in the phase space X.

By using definition (1.12), we rewrite Liouville’s theorem
as follows:

Df

Dt
= 0 .

(1.13)

What factors do lead to the changes in the distribution
function?

Let dX be a small volume in the phase space X.

v

r0

J

v

r0

Jr

v

Jr

Jv

v

FdX dX

(a) (b)

Figure 1.3: Action of the two different terms of the Liouville
operator in the 6D space X.

The second term in (1.11), v ·∇r f , means that the parti-

cles come into and go out of the volume element dX because
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their velocities are not zero (Fig. 1.3a).

So this term describes a simple kinematic effect.

If the distribution function f has a gradient over r,

then a number of particles inside the volume dX
changes because they move with velocity v.

The third term, (F/m) · ∇v f , means that the particles
escape from the volume element dX or come into it due

to their acceleration or deceleration under action of the
force field F (Fig. 1.3b).

1.1.3 The Lorentz force, gravity

In order the Liouville theorem to be valid, the force field F
has to satisfy condition (1.8).

We rewrite it as follows:

∂ v̇α
∂ vα

=
1

m

∂Fα
∂ vα

= 0

or

∂Fα
∂ vα

= 0 , α = 1, 2, 3 . (1.14)

In particular, this condition holds if

the component Fα of the force vector F does not
depend upon the velocity component vα.

This is a sufficient condition, of course.
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The classical Lorentz force

Fα = e

[
Eα +

1

c
(v × B )α

]
(1.15)

obviously has that property.

The gravitational force in the classical approximation

is entirely independent of velocity.

Other forces are considered, depending on a situation,
e.g., the force resulting from the emission of radiation (the
radiation reaction) and/or absorption of radiation by as-

trophysical plasma.

These forces when they are important must be consid-
ered with account of their relative significance, conserva-

tive or dissipative character, and other physical properties
taken.

1.1.4 Collisional friction

As a contrary example we consider the collisional drag
force which acts on a particle moving with velocity v in
plasma:

F = − k v , (1.16)

where the constant k > 0.

In this case the right-hand side of Liouville’s equation is

not zero:
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−f divv v̇ = −f divv
F

m
=

3k

m
f ,

because

∂ vα
∂ vα

= δαα = 3 .

Instead of Liouville’s equation we have

Df

Dt
=

3k

m
f > 0 . (1.17)

Thus the distribution function (i.e. the particle density)

does not remain constant on particle trajectories but in-
creases with time.

Along the phase trajectories, it increases exponentially:

f(t, r,v) ∼ f(0, r,v) exp

(
3k

m
t

)
. (1.18)

The physical sense of this phenomenon is obvious.

The friction force decelerates the particles.

They go down in Fig. 1.4 and are concentrated in the

vicinity of the axis v = 0.
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v

r0

F

Figure 1.4: Particle density increases in the phase space as a

result of action of the friction force F.

1.1.5 The exact distribution function

Let us consider another property of the Liouville theorem.

We introduce the N -particle distribution function of the
form

f̂(t, r,v) =
N∑
i=1

δ (r− ri(t)) δ (v − vi(t)) . (1.19)

The delta function of the vector-argument is defined as usu-
ally:

δ (r− ri(t)) =
3∏

α=1
δα =

= δ
(
rx − r ix(t)

)
δ
(
ry − r iy(t)

)
δ
(
rz − r iz(t)

)
. (1.20)
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We shall call function (1.19) the exact distribution func-
tion.

It is illustrated by Fig. 1.5.

X

f

<

Figure 1.5: The one-dimensional analogy of the exact distri-
bution function.

Let us substitute the exact distribution function in the

Liouville equation.

Action:

∂

∂t
+ v · ∇r +

F

m
· ∇v ==> f̂ ==> = 0 .

The resulting three terms are

∂f̂

∂t
=
∑
i

(−1) δ ′α (r− ri(t)) ṙ
i
α δ (v − vi(t)) +

+
∑
i

(−1) δ (r− ri(t)) δ
′
α (v − vi(t)) v̇

i
α , (1.21)

v · ∇r f̂ ≡ vα
∂f̂

∂rα
=
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=
∑
i

vα δ
′
α (r − ri(t)) δ (v − vi(t)) , (1.22)

F

m
· ∇v f̂ ≡ Fα

m

∂f̂

∂vα
=

=
∑
i

Fα
mi

δ (r − ri(t)) δ ′α (v − vi(t)) . (1.23)

Here the index α = 1, 2, 3 or (x, y, z).

The prime denotes the derivative with respect to the
argument of a function.

The overdot denotes differentiation with respect to time t.

Summation over the repeated index α (contraction)

is implied:

δ ′α ṙ
i
α = δ ′x ṙ

i
x + δ ′y ṙ

i
y + δ ′z ṙ

i
z .

The sum of terms (1.21)–(1.23) equals zero.

Let us rewrite it as follows

0 =
∑
i

(−ṙ iα + v iα
)
δ ′α (r− ri(t)) δ (v − vi(t))+

+
∑
i

(
−v̇ iα +

Fα
mi

)
δ (r − ri(t)) δ

′
α (v − vi(t)) .

This can occur just then that all the coefficients of differ-
ent combinations of delta functions with their derivatives

equal zero as well.

Therefore we find
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d r iα
dt

= v iα(t) ,
d v iα
dt

=
1

mi
Fα (ri(t),vi(t)) . (1.24)

Thus

the Liouville equation for an exact distribution
function is equivalent to the Newton set of equa-
tions for a particle motion, both describing a purely

dynamic behavior of the particles.

It is natural since this distribution function is exact.

No statistical averaging has been done so far.

Statistics will appear later on when, instead of the ex-
act description of a system, we begin to use some mean
characteristics such as temperature, density etc.

The statistical description is valid for systems con-

taining a large number of particles.

We have shown that finding a solution of the Liouville

equation for an exact distribution function

Df̂

Dt
= 0

(1.25)

is the same as the integration of the motion equations.
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However

for systems of a large number of interacting parti-
cles, it is much more advantageous to deal with the

single Liouville equation for the exact distribution
function which describes the entire system.

1.2 Charged particles in the electromagnetic field

1.2.1 General formulation of the problem

Let us recall the basic physics notations and establish a
common basis.

Maxwell’s equations for the electric field E and mag-
netic field B are well known to have the form:

rot B =
4π

c
j +

1

c

∂E

∂t
, (1.26)

rot E = −1

c

∂B

∂t
, (1.27)

divB = 0 , (1.28)

div E = 4πρ q . (1.29)

The fields are completely determined by electric
charges and electric currents.
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Note that Maxwell’s equations imply:

• the continuity equation for electric charge (see

Exercise 1.5)

• the conservation law for electromagnetic field en-
ergy (Exercise 1.6).

e1

0

ei

ri(t)
vi(t)

e
N�

�

�

�

���������� ����
�

�

�

�

Figure 1.6: A system of N charged particles.

Let there beN particles with charges e1, e2, . . . ei, . . . eN
,

coordinates ri(t) and velocities vi(t), see Fig. 1.6.

By definition, the electric charge density

ρ q (r, t) =
N∑
i=1

ei δ (r− ri(t)) (1.30)

and the density of electric current

j (r, t) =
N∑
i=1

ei vi(t) δ (r− ri(t)) . (1.31)

The coordinates and velocities of particles can be found
by integrating the equations of motion – the Newton equa-

tions:
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ṙi = vi(t) , (1.32)

v̇i =
1

mi
ei

[
E (ri(t)) +

1

c
vi × B (ri(t))

]
. (1.33)

Let us count the number of unknown quantities: the

vectors B, E, ri, and vi.

We obtain: 3 + 3 + 3N + 3N = 6 (N + 1).

The number of equations = 8 + 6N = 6 (N + 1) + 2.

Therefore two equations seem to be unnecessary.
Why is this so?

1.2.2 The continuity equation for electric charge

At first let us make sure that the definitions (1.30) and
(1.31) conform to the conservation law for electric char-
ge.

Differentiating (1.30) with respect to time gives

∂ρ q

∂t
= −∑

i

ei δ
′
α ṙ

i
α . (1.34)

Here the index α = 1, 2, 3.

The prime denotes the derivative with respect to the
argument of the delta function.

The overdot denotes differentiation with respect to time t.
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For the electric current density (1.31) we have the diver-
gence

div j =
∂

∂rα
jα =

∑
i

ei v
i
α δ

′
α . (1.35)

Comparing (1.34) with (1.35) we see that

∂ρ q

∂t
+ div j = 0 .

(1.36)

Therefore the definitions for ρ q and j conform to the
continuity equation.

As we shall see it in Exercise 1.5, conservation of electric
charge follows also directly from the Maxwell equations.

The difference is that above we have not used scalar

Equation (1.29).

1.2.3 Initial equations and initial conditions

Operating with the divergence on Equation (1.26)

Action:

div ==> rot B =
4π

c
j +

1

c

∂E

∂t
,

and using the continuity Equation (1.36),
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Action:

div j = − ∂ρ q

∂t
.

we obtain

0 =
4π

c

(
−∂ρ

q

∂t

)
+

1

c

∂

∂t
div E .

Thus, we find that

∂

∂t
( div E− 4πρ q ) = 0 . (1.37)

Hence Equation (1.29) will be valid at any moment of
time, provided it is true at the initial moment.

Let us operate with the divergence on Equation (1.27):

Action:

div ==> rot E = −1

c

∂B

∂t
,

∂

∂t
div B = 0 . (1.38)

Equation (1.28) implies the absence of magnetic charges or,
which is the same, the solenoidal character of the magnetic

field.

Conclusion. Equations (1.28) and (1.29) play the role
of initial conditions for the time-dependent equations

∂

∂t
B = − c rot E (1.39)
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and
∂

∂t
E = + c rot B − 4π j . (1.40)

Thus, in order to describe the gas consisting ofN charged
particles, we consider the time-dependent problem of N

bodies with a given interaction law.

The electromagnetic part of interaction is described

by Maxwell’s equations, the time-independent
scalar equations playing the role of initial
conditions for the time-dependent problem.

Therefore the set consisting of eight Maxwell’s equations

and 6N Newton’s equations is neither over- nor under-
determined.

It is closed with respect to the time-dependent problem,

i.e. it consists of 6 (N+1) equations for 6 (N+1) variables,
once the initial and boundary conditions are given.

1.2.4 Astrophysical plasma applications

The set of equations described above can be treated ana-

lytically in just three cases:

1. N = 1 , the motion of a charged particle in a given

electromagnetic field, e.g., drift motions and adiabatic
invariants, wave-particle interaction, particle accel-

eration in astrophysical plasma.
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2. N = 2 , Coulomb collisions of two charged particles,
i.e. binary collisions.

This is important for the kinetic description of physical

processes, e.g., the kinetic effects under propagation
of accelerated particles in plasma, collisional heating of

plasma by a beam of fast electrons or/and ions.

3. N → ∞ , a very large number of particles.

This case is the frequently considered one in plasma

astrophysics, because it allows us to introduce macro-
scopic descriptions of plasma, the widely-used mag-

netohydrodynamic (MHD) approximation.

Intermediate case:

Numerical integration of Equations (1.26)–(1.33) in the
case of large but finite N , like N ≈ 3 × 106, is possible

by using modern computers.

The computations called particle simulations are in-
creasingly useful for understanding many properties of as-

trophysical plasma and for demonstration of them.

One important example of a simulation is magnetic re-
connection in a collisionless plasma.

This process often leads to fast energy conversion from

field energy to particle energy, flares in astrophysical plasma
(see Part II).
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Generalizations:

The set of equations described can be generalized to in-
clude consideration of neutral particles.

This is necessary, for instance, in the study of the gen-
eralized Ohm’s law which is applied in the investigation

of physical processes in weakly-ionized plasmas, e.g., in
the solar photosphere and prominences.

Dusty and self-gravitational plasmas in space are in-
teresting in view of the diverse and often surprising facts

about planetary rings and comet environments, inter-
stellar dark space.

1.3 Gravitational systems

Gravity plays a central role in the dynamics of many astro-
physical systems – from stars to the Universe as a whole.

A gravitational force acts on the particles as follows:

mi v̇i = −mi∇φ . (1.41)

Here the gravitational potential

φ(t, r) = −
N∑
n=1

Gmn

| rn(t) − r | , n �= i , (1.42)

G is the gravitational constant.
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We shall return to this subject many times, e.g., while
studying the virial theorem.

This theorem is widely used in astrophysics.

Though the potential (1.42) looks similar to the Coulomb

potential of charged particles,

physical properties of gravitational systems differ
so much from properties of astrophysical plasma.

We shall see this fundamental difference in what fol-
lows.

1.4 Practice: Exercises and Answers

Exercise 1.1. Show that

any distribution function that is a function of the
constants of motion – the invariants of motion –

satisfies Liouville’s equation.

Answer.

A general solution of the equations of motion (1.24) de-

pends on 6N constants Ci where i = 1, 2, ... 6N .

If the distribution function is a function of these con-
stants of the motion

f = f (C1, ... Ci, ... C6N ) , (1.43)

we rewrite the left-hand side of Equation (1.13) as
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Df

Dt
=

6N∑
i=1

(
DCi
Dt

)(
∂f

∂Ci

)
. (1.44)

Because Ci are constants of the motion, DCi/Dt = 0.

Therefore the right-hand side of Equation (1.44) is also

zero. Q.e.d.

This is the so-called Jeans theorem.

Exercise 1.2. Rewrite the Liouville theorem by using the
Hamilton equations.

Answer.

Rewrite the Newton set of equations (1.24) in the Hamil-
ton form:

q̇α =
∂H

∂Pα
, Ṗα = −∂H

∂qα
, α = 1, 2, 3 . (1.45)

Here H(P, q) is the Hamiltonian of a system, qα and Pα are
the generalized coordinates and momenta, respectively.

Let us substitute the variables r and v in the Liouville
equation by the generalized variables q and P:

∂f

∂t
+ ∇PH · ∇q f −∇qH · ∇P f = 0 . (1.46)

Recall that the Poisson brackets for arbitrary quanti-

ties A and B are defined to be
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[A , B ] =
3∑

α=1

(
∂A

∂qα

∂B

∂Pα
− ∂A

∂Pα

∂B

∂qα

)
. (1.47)

Applying (1.47) to (1.46), we find the final form of the

Liouville theorem

∂f

∂t
+ [ f , H ] = 0 .

(1.48)

Note that for a system in equilibrium

[ f , H ] = 0 . (1.49)

Exercise 1.3. Discuss what to do with the Liouville theo-
rem, if it is impossible to disregard quantum indetermi-

nacy and assume that the classical description of a system
is justified.

Consider the case of dense fluids inside stars, for exam-

ple, white dwarfs.

Comment.

Inside a white dwarf star the temperature T ∼ 105 K,

but the density is very high: n ∼ 1028 − 1030 cm−3.

The electrons cannot be regarded as classical particles.

We have to consider them as a quantum system with a

Fermi-Dirac distribution.



30 Chapter 1. Particles and Fields

Exercise 1.4. Recall the Liouville theorem in a course of
mechanics – the phase volume of a system is indepen-

dent of t.

Show that this formulation is equivalent to Equation (1.13).

Exercise 1.5. Show that Maxwell’s equations imply the

continuity equation for electric charge.

Answer.

Operating with the divergence on Equation (1.26),

Action:

div ==> rot B =
4π

c
j +

1

c

∂E

∂t
,

we have

0 =
4π

c
div j +

1

c

∂

∂t
div E .

Substituting (1.29)

Comment:

(1.29) : div E = 4πρ q ,

in this equation gives us the continuity equation for the
electric charge

∂

∂t
ρ q + div j = 0 . (1.50)

Exercise 1.6. Starting from Maxwell’s equations, derive

the energy conservation law for an electromagnetic field.
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Answer.

Multiply Equation (1.26) by the electric field vector E
and add it to Equation (1.27) multiplied by the magnetic

field vector B.

The result is

∂

∂t
W = − j E − div G .

(1.51)

Here

W =
E2 + B2

8π
(1.52)

is the energy of electromagnetic field in a unit volume

of space;

G =
c

4π
[E ×B ] (1.53)

is the flux of electromagnetic field energy through a unit

surface in space, i.e. the Poynting vector.

The first term on the right-hand side of Equation (1.51)
is the power of work done by the electric field on all the

charged particles in the unit volume of space.

In the simplest approximation

evE =
d

dt
E , (1.54)

where E is the particle kinetic energy.
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Hence instead of Equation (1.51) we write the following
form of the energy conservation law:

∂

∂t


E2 +B2

8π
+
ρv2

2


+ div

(
c

4π
[E× B ]

)
= 0 . (1.55)



Chapter 2

Statistical Description of
Interacting Particle Systems

In a system which consists of many interacting
particles, the statistical mechanism of ‘mixing’ in

phase space works and makes the system’s behav-
ior on average more simple.

2.1 The averaging of Liouville’s equation

2.1.1 Averaging over phase space

As was shown above, the exact state of a system consist-

ing of N interacting particles can be given by the exact
distribution function in the 6D phase space X = { r,v}.

This function is the sum of δ-functions in N points of
the phase space:

f̂(r,v, t) =
N∑
i=1

δ (r − ri(t)) δ (v − vi(t)) . (2.1)

33
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We use Liouville’s equation to describe the change of
the system state:

∂f̂

∂t
+ v · ∇r f̂ +

F

m
· ∇v f̂ = 0 . (2.2)

Once the exact initial state of all the particles is known,

it can be represented by N points in the phase space
(Fig. 2.1).

The motion of these points is described by Liouville’s

equation.

v

r

X

1

2

N

Figure 2.1: Particle trajectories in the 6D phase space X.

In fact we usually know only some average characteris-
tics of the system’s state, such as the temperature, density,

etc.

Moreover the behavior of each single particle is in general

of no interest.

For this reason, instead of the exact distribution func-

tion, let us introduce the distribution function averaged
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over a small volume ∆X of phase space at a moment of
time t:

〈 f̂(r,v, t) 〉
X

=
1

∆X

∫
∆X

f̂(X, t) dX . (2.3)

The mean number of particles that present at a moment
of time t in an element of volume ∆X is

〈 f̂(r,v, t) 〉
X
· ∆X =

∫
∆X

f̂(r,v, t) dX . (2.4)

Obviously the distribution function averaged over phase

volume differs from the exact one (Fig. 2.2).

X

X

f

f

X
<

<

>

<

(a)

(b)

Figure 2.2: The 1D analogy of the distribution function in
phase space X: (a) the exact distribution function (2.1),
(b) the averaged function (2.3).
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2.1.2 Two statistical postulates

Let us average the exact distribution function (2.1) over a
small time interval ∆t centered at a moment of time t:

〈 f̂(r,v, t) 〉 t =
1

∆t

∫
∆t

f̂(r,v, t) dt . (2.5)

Here ∆t is small in comparison with the characteristic time
of the system’s evolution:

∆t� τ ev . (2.6)

We assume that the following two statistical postu-

lates are applicable to the system considered.

The first postulate:

The mean values 〈 f̂ 〉
X

and 〈 f̂ 〉 t exist for suffi-

ciently small ∆X and ∆t and are independent of
the averaging scales ∆X and ∆t.

Clearly the first postulate implies that the number of

particles should be large.

For a small number of particles the mean value depends
upon the averaging scale:

if, e.g., N = 1 then the exact distribution function (2.1)

is simply a δ-function, and the average over the variable X
is

〈 f̂ 〉
X

= 1/∆X .
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For illustration, the case (∆X) 1 > ∆X is shown in
Fig. 2.3.

X

X

f

f

X
<

<

>

<

f
X

<

<

>

∆

X∆( ) 1

f
X

<

<

> 1

Figure 2.3: Averaging of the exact distribution function f̂

which is equal to a δ-function.

The second postulate is

〈 f̂(X, t) 〉
X

= 〈 f̂(X, t) 〉 t = f(X, t) . (2.7)

The averaging of the distribution function over phase space

is equivalent to the averaging over time.

While speaking of the small ∆X and ∆t, we assume that
they are not too small:

∆X must contain a reasonably large number of particles

while

∆t must be large in comparison with the duration of
drastic changes of the exact distribution function, such

as the duration of the particle collisions:
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∆t� τc . (2.8)

It is in this case that the statistical mechanism of particle
‘mixing’ in phase space is at work and

the averaging of the exact distribution function over
the time ∆t is equivalent to the averaging over the
phase volume ∆X.

2.1.3 A statistical mechanism of mixing

Let us try to understand qualitatively how the mixing
mechanism works in phase space.

We start from the dynamical description of the N -
particle system in 6N -dimensional phase space in which

Γ = { ri, vi } , i = 1, 2, . . . N, (2.9)

a point is determined (t = 0 in Fig. 2.4) by the initial

conditions of all the particles.

The motion of this point is described by Liouville’s equa-

tion.

The point moves along a complicated dynamical tra-

jectory because the interactions in a many-particle system
are extremely intricate and complicated.

The dynamical trajectory has a remarkable property.
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v

ri

i

t = 0

∆

Γ

Γ

10
23

Figure 2.4: The dynamical trajectory of a system of N parti-
cles in the 6N -D phase space Γ.

Imagine a glass vessel containing a gas consisting of a

large number N of particles.

The state of this gas at any moment of time is depicted
by a single point in the phase space Γ.

Let us imagine another vessel which is identical to the
first one, with one exception.

At any moment of time t, the gas state in the second

vessel is different from that in the first one.

These states are depicted by two different points in

the space Γ.

For example, at t = 0, they are points 1 and 2 in Fig. 2.5.

With the passage of time, the gas states in both vessels
change, whereas the two points in the space Γ draw two

different dynamical trajectories (Fig. 2.5).

These trajectories do not intersect.
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v

ri

i

t = 0

∆

Γ

Γ

1

2

1 2

Figure 2.5: The dynamical trajectories of two systems never

cross each other.

If they had intersected at just one point, then the state
of the first gas, determined by 6N numbers (ri,vi), would
have coincided with the state of the second gas.

These numbers could be taken as the initial conditions

which, in turn, would have uniquely determined the motion.

The two trajectories would have merged into one.

For the same reason the trajectory of a system cannot
intersect itself.

Thus we come to the conclusion that

only one dynamical trajectory of a many parti-

cle system passes through each point of the phase
space Γ.

Since the trajectories differ in initial conditions, we can
introduce an infinite ensemble of systems (glass vessels)

corresponding to the different initial conditions.
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In a finite time the ensemble of dynamical trajectories
will closely fill the phase space Γ, without intersections.

By averaging over the ensemble we can answer the
question:

what is the probability that, at a moment of time t,
the system will be found in an element ∆Γ = ∆ri ∆vi of

the phase space Γ:

dw = 〈 f̂(ri,vi) 〉Γ
dΓ. (2.10)

Here 〈 f̂(ri,vi) 〉Γ
is a function of all the coordinates and

velocities.

It plays the role of the probability distribution den-
sity in the phase space Γ and is called the statistical dis-

tribution function or simply the distribution function.

∗ ∗ ∗

It is obvious that the same probability density can
be obtained in another way – through the averaging over
time.

The dynamical trajectory of a system, given a sufficient

large time ∆t, will closely cover the space Γ.

Since the trajectory is very intricate, it will repeatedly
pass through the phase space element ∆Γ.

Let (∆t)
Γ

be the time during which the system locates

in ∆Γ.
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For a sufficiently large ∆t, which is formally restricted
by the characteristic time of evolution of the system as a

whole, the ratio (∆t)
Γ
/∆t tends to the limit

lim
∆t→∞

( ∆t )
Γ

∆t
=
dw

dΓ
= 〈 f̂(ri,vi, t) 〉 t . (2.11)

By virtue of the role of the probability density, it is

clear that

the statistical averaging over the ensemble (2.10) is
equivalent to the averaging over time (2.11) as well

as to the definition (2.5).

2.1.4 Derivation of a general kinetic equation

Now we have everything what we need to average the exact

Liouville equation

∂f̂

∂t
+ v · ∇r f̂ +

F

m
· ∇v f̂ = 0 .

Since the equation contains the derivatives with respect
to time t and phase-space coordinates (r,v), the procedure

of averaging is defined as follows:

f(X, t) =
1

∆X ∆t

∫
∆X

∫
∆t

f̂(X, t) dX dt . (2.12)

Averaging the first term of the Liouville equation gives
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1

∆X ∆t

∫
∆X

∫
∆t

∂f̂

∂t
dX dt =

1

∆t

∫
∆t

∂

∂t


 1

∆X

∫
∆X

f̂ dX


 dt =

=
1

∆t

∫
∆t

∂

∂t
f dt =

∂f

∂t
. (2.13)

In the last equality the use is made of the fact that, by
virtue of the second postulate, the averaging of a smooth
averaged function does not change it.

Let us average the second term in Equation (2.2):

1

∆X ∆t

∫
∆X

∫
∆t

vα
∂f̂

∂rα
dX dt =

=
1

∆X

∫
∆X

vα
∂

∂rα


 1

∆t

∫
∆t

f̂ dt


 dX =

=
1

∆X

∫
∆X

vα
∂

∂rα
f dX = vα

∂f

∂rα
. (2.14)

Here the index α = 1, 2, 3.

To average the term containing the force F, let us repre-
sent it as a sum of a mean force 〈F 〉 and the force due to

the difference of the real force field from the mean (smooth)
one:

F = 〈F 〉 + F ′. (2.15)
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Substituting (2.15) in the third term in Equation (2.2)
and averaging it, we have

1

∆X ∆t

∫
∆X

∫
∆t

Fα
m

∂f̂

∂vα
dX dt =

=
〈Fα 〉
m

1

∆X

∫
∆X

∂

∂vα


 1

∆t

∫
∆t

f̂ dt


 dX+

+
1

∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt =

=
〈Fα 〉
m

∂f

∂vα
+

1

∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt . (2.16)

Gathering all three terms together, we write the averaged
Liouville equation in the form

∂f

∂t
+ v · ∇r f +

〈F 〉
m

· ∇v f =


∂f̂
∂t




c
,

(2.17)

where


∂f̂
∂t




c
= − 1

∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt .

(2.18)
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Equation (2.17) and its right-hand side (2.18) are called
the kinetic equation and the collisional integral, re-

spectively.

Thus we have found the most general form of the ki-

netic equation with a collisional integral, which cannot be
directly used in plasma astrophysics, without making some

additional simplifying assumptions.

The main of them is the binary character of collisions.

2.2 A collisional integral and correlation functions

2.2.1 Binary interactions

The statistical mechanism of mixing in phase space makes
particles have no individuality.

However, we have to distinguish different kinds of par-
ticles, e.g., electrons and protons, because their behaviors

differ.

Let f̂k (r,v, t) be the exact distribution function of par-

ticles of the kind k

f̂k (r,v, t) =
Nk∑
i=1

δ (r − rki(t)) δ (v − vki(t)) , (2.19)

the index i denoting the ith particle of kind k, Nk being

the number of particles of kind k.
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The Liouville equation for the particles of kind k takes
a view

∂f̂k
∂t

+ v · ∇r f̂k +
F̂k

mk
· ∇v f̂k = 0 , (2.20)

mk is the mass of a particle of kind k.

The force acting on a particle of kind k at a point (r,v)

of the phase space X at a moment of time t, F̂k,α (r,v, t),
is the sum of forces acting on this particle from all other

particles (Fig. 2.6):

F̂ k,α (r,v, t) =
∑
l

Nl∑
i=1

F̂
(i)
kl,α (r,v, rli(t),vli(t)) . (2.21)

r

F
kl

r
li

(t)

e
li

e
k

x y

z

(i)
v

li
(t)

Figure 2.6: An action of
a particle e li located at

the point r li on a parti-
cle of kind k at a point r

at a moment of time t.
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So the total force F̂k,α (r,v, t) depends upon the instant
positions and velocities of all the particles.

By using the exact distribution function, we rewrite for-
mula (2.21) as follows:

F̂ k,α (r,v, t) =
∑
l

∫
X1

F kl,α (X,X1) f̂l (X1, t) dX1 . (2.22)

Here

we assume that an interaction law Fkl,α (X,X1) is ex-
plicitly independent of time t;

f̂l (X, t) is the exact distribution function of particles of

kind l,

the variable of integration is designated asX1 = { r1,v1 }
and dX1 = d 3r1 d

3v1.

Formula (2.22) takes into account that the forces
considered are binary ones, i.e. they can be repre-

sented as a sum of interactions between two parti-
cles.

Making use of the representation (2.22), let us average

the force term in the Liouville equation, as this has been
done in formula (2.16).

We have

1

∆X ∆t

∫
∆X

∫
∆t

1

mk
F̂ k,α (r,v, t)

∂f̂k
∂vα

dX dt =
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=
1

∆X ∆t

∫
∆X

∫
∆t

∑
l

∫
X1

1

mk
F kl,α (X,X1) f̂l (X1, t)×

× ∂

∂vα
f̂k (X, t) dX dX1 dt =

=
1

∆X

∫
∆X

∑
l

∫
X1

1

mk
F kl,α (X,X1) ×

× ∂

∂vα


 1

∆t

∫
∆t

f̂k (X, t) f̂l (X1, t) dt


 dX dX1 . (2.23)

Here we have taken into account that the exact distribution
function f̂l (X1, t) is independent of the velocity v, which is

a part of the variable X = { r, v } related to the particles
of the kind k.

Formula (2.23) contains the pair products of ex-

act distribution functions of different particle kinds,
as is natural for the case of binary interactions.

2.2.2 Binary correlation

Let us represent the exact distribution function f̂k as

f̂k (X, t) = fk (X, t) + ϕ̂k (X, t) , (2.24)

where
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fk (X, t) is the statistically averaged distribution func-
tion,

ϕ̂k (X, t) is the deviation of the exact distribution func-
tion from the averaged one.

It is obvious that, according to (2.24),

ϕ̂k (X, t) = f̂k (X, t) − fk (X, t) ;

hence

〈 ϕ̂k (X, t) 〉 = 0 . (2.25)

Let us consider the integrals of pair products in the
averaged force term (2.23).

In view of definition (2.24), they can be rewritten as

1

∆t

∫
∆t

f̂k (X, t) f̂l (X1, t) dt =

= fk (X, t) fl (X1, t) + fkl (X,X1, t) , (2.26)

where

fkl (X,X1, t) =
1

∆t

∫
∆t

ϕ̂k (X, t) ϕ̂l (X1, t) dt . (2.27)

The function fkl is referred to as the correlation function

or, more exactly, the binary correlation function.
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The physical meaning of the correlation function is
clear from (2.26).

The left-hand side of (2.26) means the probability to find
a particle of kind k at a point X of the phase space at a

moment of time t under condition that a particle of kind l
places at a point X1 at the same time.

By definition this is a conditional probability.

In the right-hand side of (2.26) the distribution func-

tion fk (X, t) characterizes the probability that a particle
of kind k stays at a point X at a moment of time t.

The function fl (X1, t) plays the analogous role for the
particles of kind l.

If the particles of kind k did not interact with those
of kind l, then their distributions would be inde-

pendent, i.e. probability densities would simply
multiply:

〈 f̂k (X, t) f̂l (X1, t) 〉 = fk (X, t) fl (X1, t) . (2.28)

So in the right-hand side of (2.26) there should be

fkl (X,X1, t) = 0 . (2.29)

There would be no correlation in the particle distribution.

We consider a system of interacting particles.

With the proviso that the parameter characterizing the
binary interaction, e.g., Coulomb collision considered be-

low,
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ζ i ≈ e2

〈 l 〉
/〈

mv2

2

〉
, (2.30)

is small under conditions in a wide range, the correlation
function must be relatively small.

If the interaction is weak, the second term in the
right-hand side of (2.26) must be small in compar-
ison with the first one.

This fundamental property allows us to construct a theory
of plasma in many cases of astrophysical interest.

2.2.3 The collisional integral and binary correlation

Now let us substitute (2.26) in formula (2.23) for the aver-

aged force term:

1

∆X ∆t

∫
∆X

∫
∆t

1

mk
F̂ k,α (X, t)

∂f̂k
∂vα

dX dt =

=
1

∆X

∫
∆X

∑
l

∫
X1

1

mk
F kl,α (X,X1)

∂

∂vα
[ fk (X, t) fl (X1, t) +

+ fkl (X,X1, t) ] dX dX1 =

since fk (X, t) is a smooth function, its derivative over vα
can be brought out of the averaging procedure:
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=

[
∂

∂vα
fk (X, t)

]
×

×



1

∆X

∫
∆X

∑
l

∫
X1

1

mk
F kl,α (X,X1) fl (X1, t) dX dX1


+

+
1

∆X

∫
∆X

∑
l

∫
X1

1

mk
F kl,α (X,X1)

∂

∂vα
fkl (X,X1, t) dX dX1 =

=
1

mk
F k,α (X, t)

∂fk (X, t)

∂vα
+

+
∑
l

∫
X1

1

mk
F kl,α (X,X1)

∂fkl (X,X1, t)

∂vα
dX1 . (2.31)

Here we have taken into account that the averaging of
smooth functions does not change them, and the following

definition of the averaged force is used:

F k,α (X, t) =
1

∆X

∫
∆X

∑
l

∫
X1

F kl,α (X,X1) fl (X1, t) dX dX1 =

=
∑
l

∫
X1

F kl,α (X,X1) fl (X1, t) dX1 . (2.32)

This definition coincides with the previous definition (2.16)

of the averaged force, since
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all the deviations of the real force F̂k from the mean
(smooth) force Fk are taken care of in the devia-
tions ϕ̂k and ϕ̂l of the real distribution functions f̂k
and f̂l from their mean values fk and fl.

Thus the collisional integral is represented in the form


∂f̂k
∂t




c
= −∑

l

∫
X1

1

mk
F kl,α (X,X1)

∂fkl (X,X1, t)

∂vα
dX1 .

(2.33)

Let us recall that for the Lorentz force as well as for

the gravitational one the condition

∂

∂vα
F kl,α (X,X1) = 0 (2.34)

is satisfied.

So, we obtain from formula (2.33) the following expres-

sion


∂f̂k
∂t




c
= − ∂

∂vα

∑
l

∫
X1

1

mk
F kl,α (X,X1) fkl (X,X1, t) dX1 .

(2.35)

Hence the collisional integral can be written in the di-

vergent form in the velocity space v :
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
∂f̂k
∂t



c

= − ∂

∂vα
J k,α ,

(2.36)

where the flux of particles of kind k in the velocity space

is

J k,α (X, t) =
∑
l

∫
X1

1

mk
F kl,α (X,X1) fkl (X,X1, t) dX1 .

(2.37)

Therefore the averaged Liouville equation or the kinetic

equation for particles of kind k

∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα
+
F k,α (X, t)

mk

∂fk (X, t)

∂vα
=

= − ∂

∂vα

∑
l

∫
X1

1

mk
F kl,α (X,X1) fkl (X,X1, t) dX1 (2.38)

contains the unknown function fkl.

Hence the kinetic Equation (2.38) for distribution func-
tion fk is not closed.

We have to find the equation for the correlation
function fkl .
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2.3 Equations for correlation functions

To derive the equations for correlation functions, it is not

necessary to introduce any new postulates or develop new
formalisms.

All the necessary equations and averaging procedures

are at hand.

Looking at definition

fkl (X,X1, t) =
1

∆t

∫
∆t

ϕ̂k (X, t) ϕ̂l (X1, t) dt ,

where

ϕ̂k (X, t) = f̂k (X, t) − fk (X, t) ,

we see that we need an equation which will describe the

deviation of distribution function from its mean value, i.e.
the function ϕ̂k = f̂k − fk.

In order to derive such equation, we simply have to sub-
tract the averaged Liouville equation

∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα
+ ... = ...

from the exact Liouville equation (2.2)

∂f̂k
∂t

+ v · ∇r f̂k +
F̂k

mk
· ∇v f̂k = 0 .

The result is
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∂ ϕ̂k (X, t)

∂t
+ vα

∂ ϕ̂k (X, t)

∂rα
+
F̂ k,α

mk

∂f̂k
∂vα

− F k,α

mk

∂fk
∂vα

=

=
∂

∂vα

∑
l

∫
X1

1

mk
F kl,α (X,X1) fkl (X,X1) dX1 . (2.39)

Here

F̂ k,α (X, t) =
∑
l

∫
X1

F kl,α (X,X1) f̂l (X1, t) dX1 (2.40)

is the exact force (2.22) acting on a particle of the kind k,
and

F k,α (X, t) =
∑
l

∫
X1

F kl,α (X,X1) fl (X1, t) dX1 (2.41)

is the statistically averaged force.

Considering that we need the equation for the pair cor-

relation function

fkl (X1, X2, t) = 〈 ϕ̂k (X1, t) ϕ̂l (X2, t) 〉 ,

let us take two equations:

one for ϕ̂k (X1, t)

∂ ϕ̂k (X1, t)

∂t
+ v 1,α

∂ ϕ̂k (X1, t)

∂ r1,α
+ . . . = 0 (2.42)
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and another for ϕ̂l (X2, t)

∂ ϕ̂l (X2, t)

∂t
+ v 2,α

∂ ϕ̂l (X2, t)

∂ r2,α
+ . . . = 0 . (2.43)

Now we add the equations resulting from (2.42) multi-
plied by ϕ̂l and (2.43) multiplied by ϕ̂k.

We obtain

ϕ̂l
∂ ϕ̂k
∂t

+ ϕ̂k
∂ ϕ̂l
∂t

+ v 1,α
∂ ϕ̂k
∂ r1,α

ϕ̂l + . . . = 0

or

∂ (ϕ̂k ϕ̂l)

∂t
+v 1,α

∂ (ϕ̂k ϕ̂l)

∂ r1,α
+v 2,α

∂ (ϕ̂k ϕ̂l)

∂ r2,α
+ . . . = 0 . (2.44)

On averaging Equation (2.44) we have the equation for
the pair correlation function:

∂fkl (X1, X2, t)

∂t
+

+ v 1,α
∂fkl (X1, X2, t)

∂ r1,α
+ v 2,α

∂fkl (X1, X2, t)

∂ r2,α
+

+
F k,α (X1, t)

mk

∂fkl (X1, X2, t)

∂ v 1,α
+
F l,α (X2, t)

ml

∂fkl (X1, X2, t)

∂ v 2,α
+

+
∂fk (X1, t)

∂ v 1,α

∑
n

∫
X3

1

mk
F kn,α (X1, X3) fnl (X3, X2, t) dX3 +
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+
∂fl (X2, t)

∂ v 2,α

∑
n

∫
X3

1

ml
F ln,α (X2, X3) fnk (X3, X1, t) dX3 =

= − ∂

∂ v 1,α

∑
n

∫
X3

1

mk
F kn,α (X1, X3) fkln (X1, X2, X3, t) dX3 −

− ∂

∂ v 2,α

∑
n

∫
X3

1

ml
F ln,α (X2, X3) fkln (X1, X2, X3, t) dX3 . (2.45)

Here

fkln (X1, X2, X3, t) =
1

∆t

∫
∆t

ϕ̂k (X1, t) ϕ̂l (X2, t) ϕ̂n (X3, t) dt

(2.46)

is the function of triple correlations.

Thus Equation (2.45) for the pair correlation function
contains the unknown function of triple correlations.

In general,

the chain of equations for correlation functions is
unclosed: the equation for the correlation func-

tion of sth order contains the function of the or-
der (s+ 1).

2.4 Practice: Exercises and Answers

Exercise 2.1. By analogy with formula (2.26), show that

〈 f̂k (X1, t) f̂l (X2, t) f̂n (X3, t) 〉 = (2.47)
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= fk (X1, t) fl (X2, t) fn (X3, t) +

+ fk (X1, t) fln (X2, X3, t) + fl (X2, t) fkn (X1, X3, t) +

+ fn (X3, t) fkl (X1, X2, t) + fkln (X1, X2, X3, t) .

Exercise 2.2. Discuss a similarity and difference between
the kinetic theory presented in this Chapter and the famous

BBGKY hierarchy theory developed by Bogoliubov, Born
and Green, Kirkwood, and Yvon.

Hint. Show that essential to both derivations is the

weak-coupling assumption, according to which

grazing encounters, involving small fractional en-

ergy and momentum exchange between colliding
particles, dominate the evolution of the velocity dis-

tribution function.

The weak-coupling assumption provides justification
of the widely appreciated practice which leads to a very

significant simplification of the original collisional integral.
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Chapter 3

Weakly-Coupled Systems
with Binary Collisions

In a system of many interacting particles, the

weak-coupling assumption allows us to introduce a
well controlled approximation to consider the

chain of the equations for correlation functions.

This leads to a significant simplification of the
collisional integral in astrophysical plasma but not

in self-gravitating systems.

3.1 Approximations for binary collisions

3.1.1 The small parameter of kinetic theory

The infinite chain of equations for the correlation functions

does not contain more information in itself than the Liou-
ville equation for the exact distribution function.

Actually, the statistical smoothing allows to lose ‘use-

less information’ – the information about the exact mo-

61
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tion of particles.

The value of the chain is that it allows a direct intro-
duction of new physical assumptions which make it possi-

ble to break the chain off at some term (Fig. 3.1) and
to estimate the resulting error.

We call this procedure a well controlled approxima-
tion because it looks, in a sense, similar to the Taylor ex-

pansion series.

LT KE

fk fk fkl

< >
X

fkln

...BC

Figure 3.1: How to break the infinite chain of the equations for

correlation functions? LT is the Liouville theorem for an
exact distribution function f̂k. KE and BC are the kinetic

Equation for fk etc.

There is no universal way of breaking the chain off.

It is intimately related, in particular, to the physical

state of a plasma.

Different states (as well as different aims) require differ-
ent approximations.

The physical state of a plasma can be characterized, at
least partially, by the ratio of the mean energy of two par-

ticle interaction to their mean kinetic energy
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ζ i ≈ e2

〈 l 〉
/〈

mv2

2

〉
,

If mean kinetic energy can be reasonably characterized
by some effective temperature T , then

ζ i ≈ e2

〈 l 〉 (k
B
T )−1 . (3.1)

As a mean distance between the particles we take

〈 l 〉 ≈ n−1/3 .

Hence

ζ i =
e2

k
B

× n1/3

T
(3.2)

is termed the interaction parameter.

It is small for a sufficiently hot and rarefied plasma.

In many astrophysical plasmas, e.g., in the solar corona,
the interaction parameter is very small.

So

the thermal kinetic energy of plasma particles is
much larger than their interaction energy.

The particles are almost free or moving on definite tra-

jectories in the external fields if the later are present.
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We call this case the approximation of weak Coulomb
interaction.

While constructing a kinetic theory, it is natural to use
the perturbation procedure with respect to the small

parameter ζ i.

This means that

the distribution function fk must be taken to be
of order unity, the pair correlation function fkl of

order ζ i, the triple correlation function fkln of or-
der ζ 2

i , etc.

We shall see in what follows that this principle has a deep

physical sense in kinetic theory.

Such plasmas are said to be ‘weakly coupled’.

An opposite case, when the interaction parameter takes
values larger than unity, is dense, relatively cold plasmas,

for example in the interiors of white dwarf stars.

These plasmas are ‘strongly coupled’.

3.1.2 The Vlasov kinetic equation

In the zeroth order with respect to the small parameter ζ i,

we obtain the Vlasov equation with the self-consistent
electromagnetic field:

∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα
+
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+
ek
mk

(
E +

1

c
v × B

)
α

∂fk (X, t)

∂vα
= 0 . (3.3)

Here E and B are the statistically averaged electric and

magnetic fields obeying Maxwell’s equations:

curl E = −1

c

∂B

∂t
, div E = 4π ( ρ 0 + ρ q ) ,

(3.4)

curl B =
1

c

∂E

∂t
+

4π

c
( j 0 + j q ) , div B = 0 .

ρ 0 and j 0 are the external charges and currents; they de-

scribe the external fields, e.g., the uniform magnetic field
B0.

ρ q and j q are the statistically smoothed charge and cur-
rent due to the plasma particles:

ρ q (r, t) =
∑
k

ek
∫
v
fk (r,v, t) d 3v , (3.5)

j q (r, t) =
∑
k

ek
∫
v

v fk (r,v, t) d 3v . (3.6)

Therefore the electric and magnetic fields are also statis-

tically smoothed.

If we are considering processes which occur on a time
scale much shorter than the time of collisions,

τ ev � τc , (3.7)
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we use a description which includes the averaged elec-
tric and magnetic fields but neglects the microfields re-

sponsible for binary collisions.

This means that

F ′ = 0 ,

therefore the collisional integral is also equal to zero.

The Vlasov equation together with the definitions (3.5)
and (3.6), and with Maxwell’s Equations (3.4) is a nonlin-

ear integro-differential equation.

It serves as a classic basis for the theory of oscillations
and waves in a plasma with the small parameter ζ i .

The Vlasov equation is also a proper basis for theory of
wave-particle interactions in astrophysical plasma and
collisionless shock waves, collisionless reconnecting cur-

rent layers.

3.1.3 The Landau collisional integral

Using the perturbation procedure with respect to the small
parameter ζ i in the first order, and neglecting the close

Coulomb collisions, we find the kinetic equation with the
collisional integral given by Landau


∂f̂k
∂t




c
= − ∂

∂vα
J k,α , (3.8)

Here the flux of particles of kind k in the velocity space is
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J k,α =
πe 2

k lnΛ

mk

∑
l

e 2
l

∫
vl


fk

∂fl
ml ∂ v l,β

− fl
∂fk

mk ∂ v k,β


×

× (u2 δαβ − uαuβ)

u3 d 3vl . (3.9)

u = v − vl is the relative velocity, d 3vl corresponds to the

integration over the whole velocity space of ‘field’ parti-
cles l.

ln Λ is the Coulomb logarithm which takes into account
divergence of the Coulomb-collision cross-section.

The kinetic equation with the Landau integral is a non-
linear integro-differential equation for the distribution

function fk (r,v, t).

Two approaches correspond to different limiting cases.

The Landau integral takes into account the part
of the particle interaction which determines dissi-

pation while the Vlasov equation allows for the
averaged field, and is thus reversible.

For example, in the Vlasov theory, the question of the
role of collisions in the neighbourhood of resonances re-

mains open.

The famous paper by Landau (1946) was devoted to this

problem.
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Landau used the reversible Vlasov equation as the ba-
sis to study the dynamics of a small perturbation of the

Maxwell distribution function, f (1)(r,v, t).

In order to solve the linearized Vlasov equation, he made
use of the Laplace transformation, and defined the rule to

avoid a pole at
ω = k‖ v‖

in the divergent integral by the replacement

ω → ω + i 0 .

This technique for avoiding singularities may be formally
replaced by a different procedure.

Namely it is possible to add a small dissipative term

−νf (1)(r,v, t) to the right-hand side of the linearized Vla-
sov equation.

In this way, the Fourier transform of the kinetic equation

involves the complex frequency

ω = ω′ + i ν ,

leading with ν → 0 to the same expression for the Landau
damping.

Note, however, that

the Landau damping is not by collisions but by
a transfer of wave field energy into oscillations of
resonant particles.

The Landau method is really a beautiful example of com-

plex analysis leading to an important new physical result.
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The second approach reduces the reversible Vlasov equa-
tion to an irreversible one.

Although the dissipation is assumed to be negligibly small,

one cannot take the limit ν → 0 directly in the master equa-
tions: this can be done only in the final formulae.

This method of introducing a collisional damping is
natural.

It shows that

even very rare collisions play the principal role in
the physics of collisionless plasma.

3.1.4 The Fokker-Planck equation

The smallness of the interaction parameter signifies that,
in the collisional integral, the sufficiently distant Coulomb

collisions are taken care of as the interactions with a small
momentum and energy transfer.

For this reason, it comes as no surprise that the Landau

integral can be considered as a particular case of a different
approach which is the Fokker-Planck equation.

Let us consider a distribution function independent of

space so that f = f(v, t).

The Fokker-Planck equation describes the distribution
function evolution due to nonstop overlapping weak

collisions resulting in particle diffusion in velocity space:
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∂f

∂t
=


∂f̂
∂t




c
= − ∂

∂vα
[ aαf ] +

∂2

∂vα ∂vβ
[ bαβ f ] . (3.10)

This equation coincides with the diffusion equation for

some admixture with concentration f , e.g., Brownian par-
ticles in a gas, on which stochastic forces are exerted by

the molecules of the gas.

The coefficient bαβ plays the role of the diffusion coef-

ficient and is expressed in terms of the averaged velocity
change 〈 δvα 〉 in an elementary act – a collision:

bαβ =
1

2
〈 δvα δvβ 〉 . (3.11)

The other coefficient is

aα = 〈 δvα 〉 . (3.12)

It is known as the coefficient of dynamic friction.

A Brownian particle moving with velocity v through the

gas experiences a drag opposing the motion (Fig. 1.4).

In order to find the mean values appearing in the Fokker-
Planck equation, we have to make clear the physical and
mathematical sense of expressions (3.11) and (3.12).

The mean values of velocity changes are in fact sta-
tistically averaged and determined by the forces
acting between a test particle and scatterers (field

particles or waves).
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For test particles interacting with the thermal elec-
trons and ions in a plasma, such calculations give us the

Landau integral.

Thus one did not anticipate any major problems in rewrit-
ing the Landau integral in the Fokker-Planck form.

The kinetic equation found in this way will allow us

to study the Coulomb interaction of accelerated particle
beams with astrophysical plasma.

Collisional friction slows down the particles of the

beam and moves them toward the zero velocity in the ve-
locity space (Fig. 3.2).

Diffusion disperses the distribution of beam particles in

the velocity space.

v

f

0 ||

( )v || t = 0

t >0

Figure 3.2: A beam of fast
particles in plasma. We

illustrate only the ef-
fects of Coulomb colli-

sions.

During the motion of a beam of fast particles in a plasma
a reverse current of thermal electrons is generated, which
tends to compensate the electric current of fast particles –

the direct current.
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The electric field driving the reverse current makes

a great impact on the particle beam kinetics.

That is why, in order to solve the problem of accelerated

particle propagation in, for example, the solar atmosphere,
we inevitably have to apply a combined approach.

This takes into account both the electric field influence

on the accelerated particles (as in the Vlasov equation) and
their scattering from the thermal particles of a plasma.

3.2 Correlations and Debye-Hückel shielding

We are going to understand the most fundamental property

of the binary correlation function.

With this aim, we shall solve the second equation in the

chain illustrated by Fig.

KE

fk
fkl fkln

...BC

??

Here BC is the Equation (2.45) for the correlation func-

tion f kl.

To determine and to solve this equation we have to know

two functions:
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the distribution function fk from the first link in the
chain and

the triple correlation function fkln from the third link.

3.2.1 The Maxwellian distribution function

Let us consider the stationary (∂/∂t = 0) solution to the
equations for correlation functions, assuming the interac-

tion parameter ζ i to be small and using the successive
approximations in the following form.

First, we set
fkl = 0

in the kinetic equation.

Second, we assume that the triple correlation function

fkln = 0

in Equation (2.45) for the correlation function fkl etc.

The plasma is supposed to be stationary, uniform and

in the thermodynamic equilibrium state, i.e. the veloc-
ity distribution is assumed to be a Maxwellian function

fk (X) = fk (v2) = ck exp


− mk v

2

2k
B
Tk


 . (3.13)

The constant ck is determined by the normalizing condition
and equals

ck = nk


 mk

2π k
B
Tk


3/2

.
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It is obvious that the Maxwellian function satisfies the
kinetic equation under assumptions made above if the av-

eraged force is equal to zero:

F k,α(X, t) = F k,α(X) = 0 . (3.14)

Since we shall need the same assumption in the next

Section, we shall justify it there.

3.2.2 The averaged force and electric neutrality

Let us substitute the Maxwellian function in the kinetic
equation, neglecting all the interactions except the Coulomb

ones.

We obtain the following expression for the averaged force:

F k,α (X1) =
∑
l

∫
X2

F kl,α (X1, X2) fl (X2) dX2 =

since plasma is uniform, fl does not depend of r2

=
∑
l

∫
r2

F kl,α (r1, r2) d
3r2 ·

∫
v2

fl (v2) d
3v2 =

= −
∫
r2

∑
l

∂

∂r1,α


 ek el
| r1 − r2 |


 d 3r2 · nl =

= −
∫
r2

∂

∂r1,α


 ek
| r1 − r2 |


 d 3r2 ·∑

l

nl el . (3.15)
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Therefore

F k,α = 0 , (3.16)

if the plasma is assumed to be electrically neutral:

∑
l

nl el = 0 .

(3.17)

Balanced charges of ions and electrons determine

the name plasma according Langmuir (1928).

So the averaged (statistically smoothed) force (2.32) is
equal to zero in the electrically neutral plasma but is not
equal to zero in a system of charged particles of the same

charge sign: positive or negative, it does not matter.

Such a system tends to expand.

There is no neutrality in gravitational systems like

stellar clusters.

The large-scale gravitational field makes an overall ther-
modynamic equilibrium impossible.

Moreover, on the contrary to plasma, they tend to con-
tract and collapse.
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3.2.3 Pair correlations and the Debye-Hückel radius

As a first approximation, on putting the triple correlation
function

fkln = 0 ,

we obtain from Equation (2.45), in view of condition (3.16),
the following equation for the binary correlation func-

tion fkl :

v 1,α
∂fkl
∂ r1,α

+ v 2,α
∂fkl
∂ r2,α

=

= −∑
n

∫
X3




1

mk
F kn,α (X1, X3) fnl (X3, X2)

∂fk
∂ v 1,α

+

+
1

ml
F ln,α (X2, X3) fnk (X3, X1)

∂fl
∂ v 2,α


 dX3 . (3.18)

Let us consider the particles of two kinds: electrons and

ions, assuming the ions to be motionless and homoge-
neously distributed.

Then the ions do not take part in any kinetic processes.

Hence

ϕ̂ i ≡ 0

for ions; and the correlation functions associated with ϕ̂ i

equal zero too:

f ii = 0 , fei = 0 etc. (3.19)
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Among the pair correlation functions, only one has a
non-zero magnitude

fee (X1, X2) = f (X1, X2) . (3.20)

Taking into account (3.19), (3.20), and (3.13), rewrite
Equation (3.18) as follows

v1
∂f

∂ r1
+ v2

∂f

∂ r2
=

=
1

k
B
T

∫
X3

[v1 · F (X1, X3) f (X3, X2) fe (v1) +

+ v2 · F (X2, X3) f (X1, X3) fe (v2) ] dX3 . (3.21)

Since v1 and v2 are arbitrary and refer to the same kind of
particles (electrons), (3.21) takes the form

∂f

∂ r1
=

1

k
B
T

∫
X3

F (X1, X3) f (X3, X2) fe (v1) dX3 . (3.22)

Taking into account the Coulomb force in the same
approximation as (3.16) and assuming the correlation to

exist only between the positions of the particles in space
(rather than between velocities), we integrate both sides of

(3.22) over d 3v1 d
3v2.

The result is
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∂ g (r1, r2)

∂ r1
= − ne2

k
B
T

∫
r3

∇r1

1

| r1 − r3 | g (r2, r3) d
3r3 .

(3.23)

Here the function

g (r1, r2) =
∫
v1

∫
v2

f (X1, X2) d
3v1 d

3v2 . (3.24)

We integrate Equation (3.23) over r1 and designate the

function

g (r1, r2) = g (r 2
12) ,

where

r12 = | r1 − r2 | .
So we obtain the equation

g (r 2
12) = − ne2

k
B
T

∫
r3

g (r 2
23)

r13
d 3r3 .

Its solution is

g (r) =
c 0

r
exp


− r

r
DH


 , (3.25)

where

r
DH

=

(
k

B
T

4π ne2

)1/2

(3.26)



3.2. Debye-Hückel Shielding 79

is the Debye-Hückel radius or, more exactly, the elec-
tron Debye-Hückel radius.

The constant of integration

c 0 = − 1

4π r 2
DH
n

(3.27)

(Exercise 3.8).

Substituting (3.27) in solution (3.25) gives the sought-
after pair correlation function

g (r) = − 1

k
B
T

e2

r
exp


− r

r
DH


 . (3.28)

This formula shows that

the Debye-Hückel radius is a characteristic length of
the pair correlations in a fully-ionized equilibrium

plasma.

As one might have anticipated,

the binary correlation function reproduces the

shape of the actual potential of interaction, i.e. the
shielded Coulomb potential:

g (r) ∼ ϕ (r) ∼ 1

r
exp


− r

r
DH


 .

(3.29)
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Astrophysical plasmas exhibit collective phenomena
arising out of mutual interactions of many particles.

Since the radius r
DH

is a characteristic length of pair

correlations, the number n r3
DH

gives us a measure of the
number of particles which can interact simultaneously.

The inverse of this number is the so-called plasma pa-

rameter

ζp =
(
n r 3

DH

)−1
. (3.30)

This is a small quantity as well as it can be expressed in
terms of the interaction parameter ζ i (Exercise 3.1).

In many astrophysical applications, the plasma parame-

ter is really small.

Thus, the number of particles inside the Debye-Hückel

sphere is very large (Exercise 3.2).

So

the collective phenomena can be really important
in astrophysical plasma in many places where it is

weakly coupled.

3.3 Gravitational systems

A fundamental difference between the astrophysical plas-
mas and the gravitational systems lies in the nature of the

gravitational force:
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there is no shielding to vitiate this long-range 1/r2

force.

The collisional integral formally equals infinity.

The conventional wisdom of such systems asserts that
they can be described by the collisionless kinetic equation,
the gravitational analog of the Vlasov equation.

Comment:

∞ ==> 0 !!!

On the basis of what we have seen above,

the collisionless approach in gravitational systems,

i.e. the entire neglect of particle pair correlations,
constitutes an uncontrolled approximation.

Unlike the plasma, we cannot derive the next order correc-
tion to the collisionless equation in the perturbation expan-

sion.

We may hope to circumvent this difficulty by first iden-

tifying the mean field force 〈F 〉, acting at any given point
in space and then treating fluctuations F ′ away from the

mean field force.

However this is difficult to implement concretely because
of the apparent absence of a clean separation of scales.
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3.4 Comments on numerical simulations

The astrophysical plasma processes are typically investi-

gated in well developed and distinct approaches.

One approach, described by the Vlasov equation, is the

collisionless limit used when collective effects dominate.

In cases where the plasma dynamics is determined by

collisional processes and where the self-consistent fields
can be neglected, the Fokker-Planck approach is used.

At the same time, it is known that

both collective effects and Coulomb collisions can

play an essential role in a great variety of astro-
physical phenomena.

Besides, collisions play the principal role in the
physics of collisionless plasma.

Taking collisions into account may lead not only to quan-
titative but also qualitative changes in the plasma behavior.

Even in the collisionless limit, the kinetic equation is
difficult for numerical simulations, and the ‘macroparticle’
method is widely used algorithms.

Instead of direct numerical solution of the kinetic equa-
tion, a set of ordinary differential equations for every mac-

roparticle is solved.

These equations are the characteristics of the Vlasov

equation.
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In the case of a collisional plasma, the position of a
macroparticle satisfies the usual equation of the collision-

less case

ṙ ≡ d r

dt
= v(t) . (3.31)

However the momentum equation is modified owing to the
Coulomb collisions.

They are described by the Fokker-Planck operator (3.10)

which introduces a friction and diffusion in velocity space.

Thus it is necessary to find the effective collisional
force Fc which acts on the macroparticles:

v̇ ≡ dv

dt
=

1

m
(F

L
+ Fc) . (3.32)

The collisional force can be introduced phenomenologically
but a more mathematically correct approach can be con-
structed using the stochastic equivalence of the Fokker-

Planck and Langevin equations.

Stochastic differential equations are regarded as an
alternative to the description of astrophysical plasma in

terms of distribution function.

The Langevin approach allows one to overcome dif-

ficulties related to the Fokker-Planck equation and
to simulate actual plasma processes, taking account

of both collective effects and Coulomb collisions.

Generally, if we construct a method for the simulation
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of complex processes in astrophysical plasma, we have to
satisfy the following obvious but conflicting conditions.

First, the method should be adequate for the task in
hand.

For a number of problems the simplified models of

the collisional integral can provide a correct description and
ensure a desired accuracy.

Second, the method should be computationally efficient.

The algorithm should not be extremely time-consuming.

In practice, some compromise between accuracy and

complexity of the method should be achieved.

A ‘recipe’:

the choice of a particular model of the collisional
integral is determined by the importance and par-

ticular features of the collisional processes in a given
astrophysical problem.

3.5 Practice: Exercises and Answers

Exercise 3.1. Show that the interaction parameter ζ i is
related to the plasma parameter ζp as follows:

ζ i =
1

4π
ζ 2/3

p . (3.33)

Exercise 3.2. How many particles are inside the Debye-

Hückel sphere in plasma of the solar corona?
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Answer.

For an electron-proton plasma with T ≈ 2 × 106 K and
n ≈ 2 × 108 cm−3, the Debye-Hückel radius

r
DH

=

(
kT

8π e2 n

)1/2
≈ 4.9

(
T

n

)1/2
≈ 0.5 cm . (3.34)

The number of particles inside the Debye-Hückel sphere

N
DH

= n
4

3
πr3

DH
∼ 108. (3.35)

Hence the typical value of plasma parameter in the corona

is really small:
ζp ∼ 10−8 .

The interaction parameter is also small:

ζ i ∼ 10−6 .

Exercise 3.3. Estimate the interaction parameter (3.2) in
the interior of white dwarf stars (see also Exercise 1.3).

Exercise 3.4. Let w = w (v, δv) be the probability that
a test particle changes its velocity v to v + δv in the time

interval δt.

The velocity distribution at the time t can be written as

f(v, t) =
∫
f(v − δv, t− δt)w (v − δv, δv) d 3δv . (3.36)

Show that
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the Fokker-Planck equation follows from the Tay-
lor series expansion of the function f(v, t) given by

formula (3.36).

Exercise 3.5. Express the collisional integral in terms of
the differential cross-sections of interaction between parti-

cles.

Exercise 3.6. Show that

the Fokker-Planck collisional model can be derived
from the Boltzmann collisional integral

under the assumption that the change in the velocity of a
particle due to a collision is rather small.

Exercise 3.7. The Landau integral is generally thought to
approximate the Boltzmann integral for the 1/r potential to

a ‘dominant order’, i.e. to within terms of order 1/lnΛ,
where lnΛ is the Coulomb logarithm.

However this is not the whole truth.

Show that

the Landau integral approximates the Boltzmann

integral to the dominant order only in parts of the
velocity space.

Exercise 3.8. Find the constant of integration c 0 in for-

mula (3.25).

Exercise 3.9. Write and discuss the gravitational analog

of the Vlasov equation.



3.5. Practice: Exercises and Answers 87

Answer.

The basic assumption is that the gravitational N -body

system can be described in terms of a statistically smooth
distribution function f (X, t).

The Vlasov equation manifests that this function will
stream freely in the self-consistent gravitational potential φ (r, t)

associated with f (X, t), so that

∂f (X, t)

∂t
+ vα

∂f (X, t)

∂rα
− ∂φ

∂rα

∂f (X, t)

∂vα
= 0 . (3.37)

Here

∆φ = − 4π Gρ (r, t) (3.38)

and

ρ (r, t) =
∫
f (r,v, t) d 3v . (3.39)

Note that, in the context of the mean field theory, a
distribution of particles over their masses has no effect.

Applying for example to the system of stars in a galaxy,

Equation (3.37) implies that

the net gravitational force acting on a star is de-
termined by the large-scale structure of the galaxy

rather than by whether the star happens to lie close
to some other star.
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The force acting on any star does not vary rapidly, and each
star is supposed to accelerate smoothly through the force

field generated by the galaxy as a whole.

In fact, gravitational encounters are not screened,

they can be thought of as leading to an additional collision-
al term on the right side of the equation – a collisional

integral.

However very little is known mathematically about such
possibility.

Exercise 3.10. Discuss a gravitational analog of the Lan-

dau integral in the following form

∂f̂
∂t




c
= σ

∂

∂ v

∫
v ′

∂2 |v − v ′ |
∂ v ∂ v ′ ·

(
∂

∂ v
− ∂

∂ v ′

)
×

× [ f(r, v, t) f(r, v ′, t) ] d 3v ′ . (3.40)

Here σ is a constant determined by the effective collision
rate.



Chapter 4

Macroscopic Description of
Astrophysical Plasma

In this Chapter we treat individual kinds of parti-
cles as continuous media, mutually penetrating

charged gases which interact between themselves
and with an electromagnetic field.

This approach gives us the multi-fluid model
which is useful to consider many properties of as-

trophysical plasmas, e.g., the solar wind.

4.1 Summary of microscopic description

The kinetic equation gives us a microscopic (though av-

eraged in a statistical sense) description of plasma.

Let us consider the transition to a less comprehensive
macroscopic description.

We start from the kinetic equation for particles of kind k

89
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∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα
+

+
F k,α (X, t)

mk

∂fk (X, t)

∂vα
=


∂f̂k
∂t



c
. (4.1)

Here the statistically averaged force is

F k,α (X, t) =
∑
l

∫
X1

F kl,α (X,X1) fl (X1, t) dX1 (4.2)

and the collisional integral


∂f̂k
∂t



c
= − ∂

∂vα
J k,α (X, t) , (4.3)

where the flux of particles of kind k

J k,α (X, t) =
∑
l

∫
X1

1

mk
F kl,α (X,X1) f kl (X,X1, t) dX1

(4.4)

in the 6D phase space X = { r,v}.

4.2 Definition of macroscopic quantities

Before the deduction of equations for the macroscopic quan-
tities or macroscopic transfer equations, let us define the

following moments of the distribution function.
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(a) The zeroth moment (without multiplying the dis-
tribution function fk by the velocity v)

∫
v
fk (r,v, t) d 3v = nk(r, t) (4.5)

is the number of particles of kind k in a unit volume.

It is related to the mass density of particles of kind k

ρk(r, t) = mk nk(r, t) .

The plasma mass density is accordingly

ρ (r, t) =
∑
k

mk nk(r, t) . (4.6)

(b) The first moment of the distribution function, i.e.

the integral of the product of the velocity v to the first
power and the distribution function fk,

∫
v
vα fk(r,v, t) d

3v = nk uk,α (4.7)

is the particle flux, i.e. product of the number density by

their mean velocity

uk,α(r, t) =
1

nk

∫
v
vα fk(r,v, t) d

3v . (4.8)

Consequently, the mean momentum of particles of kind k

in a unit volume is expressed as follows

mk nk uk,α = mk

∫
v
vα fk(r,v, t) d

3v . (4.9)
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(c) The second moment of the distribution function is
defined to be

Π
(k)
αβ (r, t) = mk

∫
v
vαvβ fk (r,v, t) d 3v =

= mknk uk,αuk,β + p
(k)
αβ . (4.10)

Here we have introduced

v ′
α = vα − uk,α

which is the deviation of the particle velocity from its mean

value (4.8), so that
〈 v ′

α 〉v = 0 ;

and
p

(k)
αβ = mk

∫
v
v ′
αv

′
β fk (r,v, t) d 3v , (4.11)

is the pressure tensor.

Π
(k)
αβ is the tensor of momentum flux for particles of

kind k.

Its component Π
(k)
αβ is the αth component of the momen-

tum transported by the particles of kind k, in a unit time,
across the unit area perpendicular to the axis rβ.

Once we know the distribution function fk (r,v, t), we
can derive all macroscopic quantities related to these par-

ticles.

So, higher moments of the distribution function will be

introduced as needed.



4.3. Macroscopic Transfer Equations 93

4.3 Macroscopic transfer equations

Note that the deduction of macroscopic equations is just
derivation of the equations for the distribution function mo-

ments.

4.3.1 Equation for the zeroth moment

Let us calculate the zeroth moment of the kinetic equation:

∫
v

∂fk
∂t

d 3v +
∫
v
vα
∂fk
∂rα

d 3v +

+
∫
v

Fk,α
mk

∂fk
∂vα

d 3v =
∫
v


∂f̂k
∂t



c
d 3v . (4.12)

We interchange the order of integration over velocities

and the differentiation with respect to time t in the first
term and with respect to coordinates rα in the second one.

Under the second integral

vα
∂fk
∂rα

=
∂

∂rα
(vαfk) − fk

∂vα
∂rα

=
∂

∂rα
(vαfk) − 0 ,

since r and v are independent variables in the phase

space X.

Taking into account that the distribution function quick-
ly approaches zero as v → ∞, the integral of the third

term is taken by parts and equals zero (Exercise 4.1).
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The integral of the right-hand side of (4.12) describes the
change in the number of particles of kind k as a result

of collisions with particles of other kinds.

If the processes of transformation, during which the par-
ticle kind can be changed (such as ionization, recombina-
tion, charge exchange etc., see Exercise 4.2), are not allowed

for, then the last integral is zero as well:

∫
v


∂f̂k
∂t



c
d 3v = 0 . (4.13)

Thus, by integration of (4.12), the following equation is
found

∂nk
∂t

+
∂

∂rα
nk uk,α = 0 .

(4.14)

This is the continuity equation expressing the conser-

vation of particles of kind k or (i.e. the same, of course)
conservation of their mass:

∂ρk
∂t

+
∂

∂rα
ρk uk,α = 0 . (4.15)

Equation (4.14) for the zeroth moment nk depends

on the unknown first moment uk,α.

This is illustrated by Fig. 4.1.
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LT KE

fk fk fkl< >
X

< >
v

n

u

nk

k

fkln

...BC

m

m1

0

Figure 4.1: KE is the kinetic equation, m0 is the equation for
the zeroth moment of the distribution function fk.

4.3.2 The momentum conservation law

Now let us calculate the first moment of the kinetic equa-

tion multiplied by the mass mk:

mk

∫
v

∂fk
∂t

vα d
3v +

+mk

∫
v
vαvβ

∂fk
∂rβ

d 3v +
∫
v
vα Fk,β

∂fk
∂vβ

d 3v =

= mk

∫
v
vα


∂f̂k
∂t



c
d 3v . (4.16)

With allowance made for the definitions (4.7) and (4.10),
we obtain the momentum conservation law

∂

∂t
(mknk uk,α) +

∂

∂rβ

(
mknk uk,αuk,β + p

(k)
αβ

)
−
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−〈F k,α(r, t) 〉v = 〈F (c)
k,α (r, t) 〉v . (4.17)

Here p
(k)
αβ is the pressure tensor (4.11), i.e. a part of the

unknown second moment (4.10).

The mean force acting on the particles of kind k in a
unit volume is

〈F k,α (r, t) 〉v =
∫
v
F k,α (r,v, t) fk (r,v, t) d 3v . (4.18)

In the case of the Lorentz force, the mean force

〈F k,α (r, t) 〉 v = nkek

[
Eα +

1

c
(uk ×B )α

]

or

〈F k,α (r, t) 〉 v = ρ q
k Eα +

1

c
( j q

k × B )α .

(4.19)

Here ρ q
k and j q

k are the mean densities of electric charge and
current, produced by the particles of kind k.

Note that

the mean electromagnetic force couples all the
charged components of astrophysical plasma to-

gether

because the electric and magnetic fields, E and B, act on all

charged components and, at the same time, all charged
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components contribute to the electric and magnetic fields
according to Maxwell’s equations.

The right-hand side of Equation (4.17) contains the mean

force resulting from collisions, the mean collisional force

〈F (c)
k,α (r, t) 〉 v = mk

∫
v
vα


∂f̂k
∂t



c
d 3v . (4.20)

Substituting (4.3) in definition (4.20) and integrating

gives us the most general formula for the mean collision-
al force

〈F (c)
k,α (r, t) 〉 v = mk

∫
v
J k,α (r,v, t) d 3v = (4.21)

=
∑
l �=k

∫
v

∫
v1

∫
r1

F kl,α (r,v, r1,v1) fkl (r,v, r1,v1, t) d
3r1 d

3v1 d
3v .

Note that

for the particles of the same kind, the elastic col-

lisions cannot change the total particle momentum
per unit volume.

That is why l �= k in the sum (4.21).

Formula (4.21) contains the unknown binary correla-

tion function fkl.

The last should be found from the correlation function
Equation (2.45) indicated as the second link BC in Fig. 4.2.

Thus
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the equation for the first moment of the distribution
function is as much unclosed as the initial kinetic

equation.

Therefore the equation for the first moment is unclosed in
two directions.

KE

fk fkl

< >
v

n

u

nk

k

fkln

...BC

m

m ...

...

fkl

0

1

=

=

Figure 4.2: m0, m1 are
the equations for the

first two moments. The
link m1 is unclosed in
two directions.

If each of kinds of particles is in thermodynamic equilib-
rium, then the mean collisional force can be expressed in

terms of the mean momentum loss during the collisions
of a particle of kind k with the particles of other kinds:

〈F (c)
k,α (r, t) 〉 v = −∑

l �=k

mknk (uk,α − ul,α)

τkl
.

(4.22)
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Here τ−1
kl = ν kl is the mean frequency of collisions between

the particles of kinds k and l.

If uk,α > ul,α then the mean collisional force is negative:

the fast particles of kind k slow down by collisions

with the slowly moving particles of other kinds.

The force is zero, once the particles of all kinds have
identical mean velocities.

Therefore

the mean collisional force, as well as the mean
electromagnetic force, tends to make astrophysical

plasma be a single hydrodynamic medium.

4.4 The energy conservation law

4.4.1 The second moment equation

The second moment of a distribution function fk is the
tensor of momentum flux density

Π
(k)
αβ (r, t) = mk

∫
v
vαvβ fk (r,v, t) d 3v =

= mknk uk,αuk,β + p
(k)
αβ .

In order to find an equation for this tensor, we should
multiply the kinetic equation

∂fk
∂t

+ vα
∂fk
∂rα

+
F k,α

mk

∂fk
∂vα

=


∂f̂k
∂t




c



100 Chapter 4. Macroscopic Description of Plasma

by the factor mk vαvβ and integrate over velocity space v.

In this way, we could arrive to a matrix equation in
partial derivatives.

If we take the trace of this equation we obtain the par-
tial differential scalar equation for energy density of the

particles.

This is the correct self-consistent way which is the basis

of the moment method.

For our aims, a simpler direct procedure is sufficient
and correct.

In order to derive the energy conservation law, we

multiply Equation (4.1) by the particle’s kinetic energy

mkv
2
α/2

and integrate over velocities, taking into account that

vα = uk,α + v ′
α , 〈 v ′

α 〉v = 0 ,

and

v 2
α = u 2

k,α + (v ′
α)

2
+ 2 uk,α v

′
α .

A straightforward integration yields

∂

∂t


ρku 2

k

2
+ ρk εk


+

+
∂

∂rα


 ρkuk,α


u 2

k

2
+ εk


 + p

(k)
αβ uk,β + q k,α


 =
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= ρ q
k (E · uk) +

(
F

(c)
k · uk

)
+Q

(c)
k (r, t)+L (r)

k (r, t) . (4.23)

Here

mk εk(r, t) =
1

nk

∫
v

mk (v ′
α)

2

2
fk (r,v, t) d 3v =

=
mk

2nk

∫
v

(v ′
α)

2
fk (r,v, t) d 3v (4.24)

is the mean kinetic energy of chaotic (non-directed)

motion per single particle of kind k.

Thus the first term on the left-hand side of (4.23) rep-
resents the time derivative of the energy of the particles of

kink k in a unit volume, which is the sum of kinetic energy
of a regular motion with the mean velocity uk and the

so-called internal energy.

As every tensor, the pressure tensor can be written as

p
(k)
αβ = pk δαβ + π

(k)
αβ . (4.25)

On rearrangement, we obtain the following general equation

∂

∂t


ρku 2

k

2
+ ρk εk


+

+
∂

∂rα


 ρkuk,α


u 2

k

2
+ wk


+ π

(k)
αβ uk,β + q k,α


 =
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= ρ q
k (E · uk) +

(
F

(c)
k · uk

)
+Q

(c)
k (r, t)+L (r)

k (r, t) . (4.26)

Here

wk = εk +
pk
ρk

(4.27)

is the heat function per unit mass.

Therefore the second term on the left-hand side contains

the energy flux

ρkuk,α


u 2

k

2
+ wk


 ,

which can be called the ‘advective’ flux of kinetic energy.

Let us mention the known astrophysical application of
this term.

The advective cooling of ions heated by viscosity might

dominate the cooling by the electron-ion collisions, e.g., in a
high-temperature plasma flow near a rotating black hole.

In an advection-dominated accretion flow (ADAF),

the heat generated via viscosity is transferred inward the
black hole rather than radiated away locally like in a stan-

dard accretion disk model.

However, discussing the ADAF as a solution for the im-
portant astrophysical problem should be treated with rea-

sonable cautions.
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Looking at Equations (4.23) for electrons and ions sepa-
rately, we see that

too many assumptions have to be made to arrive to
the ADAF approximation.

For example, this is not realistic to assume that plasma
electrons are heated only due to collisions with ions and,
for this reason, the electrons are much cooler than the ions.

The suggestions underlying the ADAF model ignore sev-

eral effects including reconnection and dissipation of mag-
netic fields (regular and random) in astrophysical plasma.

This makes a physical basis of the ADAF model uncer-
tain.

4.4.2 The case of thermodynamic equilibrium

In order to clarify the definitions given above, let us, for a
while, come back to the general principles.

If the particles of the kth kind are in the thermody-
namic equilibrium, then fk is the Maxwellian function

with the temperature Tk:

f
(0)
k (r,v) = nk(r)


 mk

2π k
B
Tk(r)


3/2

×

× exp


−

mk |v − uk(r) | 2
2 k

B
Tk(r)


 . (4.28)
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In this case, according to (4.24), the mean kinetic energy
of chaotic motion per single particle of kind k

mk εk =
3

2
k

B
Tk . (4.29)

The pressure tensor (4.11) is isotropic:

p
(k)
αβ = pk δαβ , (4.30)

where the scalar

pk = nk kB
Tk (4.31)

is the gas pressure of the particles of kind k.

This is also the equation of state for the ideal gas.

Thus we have found that the pressure tensor is diagonal.

This implies the absence of viscosity for the ideal gas:

π
(k)
αβ = 0 . (4.32)

The heat function per unit mass or, more exactly, the
specific enthalpy is

wk = εk +
pk
ρk

=
5

2

k
B
Tk
mk

. (4.33)

It was a particular case of the thermodynamic equilib-

rium.
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4.4.3 The general case of anisotropic plasma

In general, we do not expect that the particles of kind k

have reached thermodynamic equilibrium.

Nevertheless we often use the mean kinetic energy (4.24)
to define the effective kinetic temperature Tk according

to definition (4.29).

A kinetic temperature is just a measure for the
spread of the particle distribution in velocity space.

The kinetic temperatures of different components in as-
trophysical plasma may differ from each other.

Moreover, in an anisotropic plasma, the kinetic temper-

atures parallel and perpendicular to the magnetic field
are different.

Without supposing thermodynamic equilibrium, in an
anisotropic plasma, the part associated with the devia-

tion of the distribution function from the isotropic one is
distinguished in the pressure tensor:

p
(k)
αβ − pk δαβ = π

(k)
αβ . (4.34)

Here π
(k)
αβ is called the viscous stress tensor.

Recall that we did not derive an equation for this tensor.

The term π
(k)
αβ uk,β in equation (4.23) represents the flux

of energy released by the viscous force in the particles of

kind k.
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The last term on the left-hand side of the energy equa-
tion, the vector

q k,α =
∫
v

mk (v ′)2

2
v ′
α fk (r,v, t) d 3v (4.35)

is the heat flux density due to the particles of kind k.

Formula (4.35) shows that a third-order-moment term
appears in the second order moment of the kinetic equation.

The right-hand side of the energy conservation law (4.23)
contains the following four terms:

(a) The first term

ρ q
k (E · uk) = nkek Eα uk,α (4.36)

is the work done by the Lorentz force (without the mag-
netic field, of course) in unit time on unit volume.

(b) The second term

(
F

(c)
k · uk

)
= uk,α

∫
v
mk v

′
α


∂f̂k
∂t




c
d 3v (4.37)

is the work done by the collisional force of friction of the
particles of kind k with all other particles in unit time on

unit volume.
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The work of friction force results from the mean
momentum change of particles of kind k (moving

with the mean velocity uk) owing to collisions with
all other particles.

This work equals zero if uk = 0.

(c) The third term

Q
(c)
k (r, t) =

∫
v

mk (v ′)2

2


∂f̂k
∂t




c
d 3v (4.38)

is the rate of thermal energy release (heating or cooling) in
a gas of the particles of kind k due to collisions with other

particles.

Recall that the collisional integral depends on the bi-
nary correlation function fkl.

(d) The last term L (r)
k (r, t) takes into account that a

plasma component k can gain energy by absorbing radia-
tions of different kinds and can lose the energy by emitting

radiations.

4.5 General properties of transfer equations

4.5.1 Divergent and hydrodynamic forms

Equations (4.14), (4.17), and (4.23) are referred to as the
equations of particle, momentum and energy transfer.

They are written in the ‘divergent’ form.
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This essentially states the conservation laws and turns
out to be convenient in numerical work, to construct the

conservative schemes for computations.

Sometimes, other forms are more convenient.

For instance, the equation of momentum transfer or sim-
ply the equation of motion can be brought into the fre-

quently used form:

ρk


∂ uk,α

∂t
+ uk,β

∂ uk,α
∂rβ


 = − ∂

∂rβ
p

(k)
αβ +

+ 〈F k,α (r, t) 〉 v + 〈F (c)
k,α (r, t) 〉 v . (4.39)

The so-called substantial derivative appears on the left-

hand side of this equation:

d (k)

dt
=

∂

∂t
+ uk,β

∂

∂rβ
=

∂

∂t
+ uk · ∇r .

(4.40)

This substantial or advective derivative – the total time
derivative following a fluid element of kind k – is typical
of hydrodynamic-type equations, to which the equation

of motion (4.39) belongs.

In the frame, in which the fluid element is not mov-
ing, the mean velocity uk = 0 but the time partial

derivative ∂/∂t does not vanish of course.



4.5. Properties of the Transfer Equations 109

The total time derivative with respect to the mean veloc-
ity uk of the particles of kind k is different for each kind k.

In the one-fluid MHD theory, we shall introduce the sub-
stantial derivative with respect to the average velocity of

the plasma as a whole.

For the case of the Lorentz force, the equation of mo-
tion of the particles of kind k can be rewritten as follows:

ρk
d (k) uk,α
dt

= − ∂

∂rβ
p

(k)
αβ + ρ q

k Eα +
1

c
( j q

k ×B )α +

+ 〈F (c)
k,α (r, t) 〉 v . (4.41)

Here the right-hand side represents the forces acting on the

fluid element of kind k, in particular, the last term is the
mean collisional force.

The left-hand side of (4.41) is the change of the momen-
tum of this fluid element.

4.5.2 Status of the conservation laws

As we saw above, when we treat a plasma as several con-
tinuous media (the mutually penetrating charged gases),

for each of them,

the main three average properties (density, veloc-

ity, and a quantity like temperature) are governed
by the basic conservation laws for mass, momen-
tum, and energy in the media.
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These conservation equations contain more unknowns
than the number of equations.

The transfer equations for local macroscopic quantities

are as much unclosed as the initial kinetic equation (see
KE in Fig. 4.3).

LT KE

fk fk fkl< >
X

< >
v

n

u

n

ε

k

k

k

fkln

...BC

m

m

m

...

...

fkl

fkl

0

1

2

=

=

=

Figure 4.3: KE and BC

are the kinetic equa-
tion and the equation for
the correlation function.

m0, m1 etc. are the
chain of the equation for

the moments.

For example, formula for the mean collisional force con-

tains the unknown correlation function fkl.

The last should be found from the correlation function

Equation (the second link BC in Fig. 4.3).

The terms (4.37) and (4.38) in the energy conservation

equation also depend on the unknown function fkl.

It is also important that the transfer equations are un-

closed in ‘orthogonal’ direction:
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Equation for the zeroth moment (the linkm0 in Fig. 4.3),
density nk, depends on the unknown first moment, the

mean velocity uk, and so on.

This process of generating equations for the higher

moments could be extended indefinitely depending solely
on how many primary variables (nk, uk, εk, ...) we are pre-
pared to introduce.

Anyway we know now that

the conservation laws for mass, momentum, and en-

ergy in the components of astrophysical plasma rep-
resent the first three links in the chain of equations
for the distribution function moments.

It certainly would not be easy (if possible) to arrive to this

fundamental conclusion
and

would be difficult to derive the conservation laws in
the form of the transfer Equations (4.14), (4.17), and (4.23)
in the way which is typical for the majority of textbooks:

from simple specific knowledge to more general ones.

4.6 Equation of state and transfer coefficients

The first three transfer equations for a plasma compo-
nent k would be closed with respect to the three unknown

variables ρk, uk, and εk, if it were possible to express the
other unknown quantities pk, π

(k)
αβ , q (k)

α , etc. in terms of

these three variables.
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Thus, we have to know the equation of state and the
so-called transfer coefficients.

How can we find them?

Formally, we should write equations for higher moments
of the distribution function.

However these equations will not be closed either.

So, how shall we proceed?

According to the general principles of statistical physics,

by virtue of collisions in a closed system of particles,
any distribution function tends to assume the Max-

wellian form.

The Maxwellian distribution is the kinetic equation so-
lution for a stationary homogeneous gas in the absence of

any mean force in the thermal equilibrium, i.e. for a gas in
thermodynamic equilibrium.

Then spatial gradients and derivatives with respect to
time are zero.

In fact they are always nonzero.

For this reason, the assumption of full thermodynamic
equilibrium is replaced with the local thermodynamic equi-
librium (LTE).

Moreover

if the gradients and derivatives are small, then the

real distribution function differs little from the lo-
cal Maxwellian one, the difference being propor-
tional to the small gradients or derivatives.
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If we are interested in a process occurring in a time t,
which is much greater than the collision time τ , and at a

distance L, which is much larger than the mean free path λ,

t� τ , L� λ , (4.42)

then the distribution function fk(r,v, t) is a sum of the
local Maxwellian distribution

f
(0)
k (r,v, t) = nk(r, t)


 mk

2π k
B
Tk(r, t)


3/2

×

× exp


−

mk |v − uk(r, t) | 2
2 k

B
Tk(r, t)


 (4.43)

and some small additional term f
(1)
k (r,v, t).

Therefore

fk(r,v, t) = f
(0)
k (r,v, t) + f

(1)
k (r,v, t) . (4.44)

Since the function f
(0)
k depends on t and r, we find the

derivatives ∂f
(0)
k /∂t and ∂f

(0)
k /∂rα.

By using these derivatives, we substitute function (4.44)
in the kinetic equation and linearly approximate the colli-

sional integral by using one or another of the models intro-
duced in Chapter 3; see also Exercise 4.5.

Then we seek the additional term f
(1)
k in the linear ap-

proximation.
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For example, in the case of the heat flux qα, the flux qα
is chosen to be proportional to the temperature gradient.

Thus, in a fully ionized plasma without magnetic field,

the heat flux in the electron component of plasma

q e = −κ e ∇Te , (4.45)

where

κ e ≈ 1.84 × 10−5

lnΛ
T 5/2
e (4.46)

is the coefficient of electron thermal conductivity.

In the presence of strong magnetic field in astro-

physical plasma, all the transfer coefficients become highly
anisotropic.

Since the Maxwellian function and its derivatives are de-
termined by the parameters nk, uk, and Tk, the transfer

coefficients are expressed in terms of the same quantities
and magnetic field B, of course.

This procedure makes it possible to close the set of
transfer equations for astrophysical plasma

under the conditions (4.42).

∗ ∗ ∗

The first three moment equations were extensively used
in astrophysics, for example, in investigations of the solar

wind.
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They led to a significant understanding of phenomena
such as escape, acceleration and cooling.

However, as more detailed observations become avail-

able, it appeared that the collisionally dominated mod-
els are not adequate for most physical states of the solar

wind.

A higher order, closed set of equations for the six mo-

ments have been derived for multi-fluid, moderately non-
Maxwellian plasma of the solar wind.

On this basis, the generalized expression for heat flux re-
lates the flux to the temperature gradients, relative stream-

ing velocity, thermal anisotropy, temperature differences of
the components.

4.7 Gravitational systems

There is a big difference between astrophysical plasmas and

astrophysical gravitational systems (Sect. 3.3).

The gravitational attraction cannot be screened.

A large-scale gravitational field always exists over a

system because the neutrality condition (3.17) cannot be
satisfied.

The large-scale gravitational field makes an overall
thermodynamic equilibrium impossible.

Therefore
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those results of plasma astrophysics which explicitly
depend upon the plasma being in thermodynamic

equilibrium do not hold for gravitational systems.

For systems, like the stars in a galaxy, we may hope
that the observed distribution function reflects something

about the initial conditions rather than just the relax-
ation mechanism.

So galaxies may be providing us with clues on how they

were formed.

∗ ∗ ∗

If we consider processes on a spatial scale which is large

enough to contain a large number of stars then one of the
main requirements of the continuum mechanics is justified.

Anyway, several aspects of the structure of a galaxy can

be understood in hydrodynamic approximation.

More often than never,

hydrodynamics provides a first level description

of an astrophysical phenomenon governed predom-
inantly by the gravitational force.

For example, the early stages of star formation during

which an interstellar cloud of low density collapses un-
der the action of its own gravity can be modeled in the

hydrodynamic approximation.
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However, when we want to explain the difference between
the angular momentum of the cloud and that of the born

star, we have to include the effect of a magnetic field.
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Chapter 5

The Generalized Ohm’s Law
in Plasma

The multi-fluid models of astrophysical plasma al-
low us to derive the generalized Ohm’s law and

to consider different physical approximations, in-
cluding the collisional and collisionless plasma
models.

5.1 The classic Ohm’s law

The usual Ohm’s law,

j = σE ,

relates the current j to the electric field E in a solid con-
ductor in rest.

As we know, the electric field in every equation of mo-
tion determines acceleration of particles rather than their

velocity.

119
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That is why, generally, such a simple relation as the clas-
sic Ohm’s law does not exist.

Moreover, while considering astrophysical plasmas, it is
necessary to take into account the presence of a magnetic

field and the motion of a plasma as a whole or as a medium
consisting of several moving components, their compress-

ibility.

Recall the way of deriving the usual Ohm’s law.

The current is determined by the relative motion of elec-

trons and ions.

Let us assume that the ions do not move.

An equilibrium is set up between the electric field action
and electrons-on-ions friction:

0 = − e neEα + mene νei ( 0 − ue,α) ,

resulting in Ohm’s law

jα = − e ne ue,α = +
e2ne

me νei
Eα = σEα . (5.1)

Here

σ =
e2ne

me νei
(5.2)

is the electric conductivity.

In order to deduce the generalized Ohm’s law for a plasma
with magnetic field, we have to consider at least two equa-

tions of motion – for the electron and ion components.
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5.2 Derivation of basic equations

Let us write the momentum equations for electrons and

ions:

me
∂

∂t
(ne ue,α) = − ∂Π

(e)
αβ

∂rβ
− ene

[
E +

1

c
(ue × B )

]
α

+

+mene νei (ui,α − ue,α) , (5.3)

mi
∂

∂t
(ni ui,α) = − ∂Π

(i)
αβ

∂rβ
+ Zi eni

[
E +

1

c
(ui ×B )

]
α
+

+mene νei (ue,α − ui,α) . (5.4)

Here the tensor of momentum flux

Π
(e)
αβ (r, t) = mene ue,α ue,β + p

(e)
αβ (5.5)

and

Π
(i)
αβ (r, t) = mini ui,α ui,β + p

(i)
αβ . (5.6)

The last term in (5.3) represents the mean momentum

transferred, because of collisions, between electrons and
ions.

It is equal, with opposite sign, to the last term in Equa-

tion (5.4).

We assume that there are just two kinds of particles,
their total momentum remaining constant under the action

of elastic collisions.
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Now let us suppose that the ions are protons (Zi = 1),
and electrical neutrality occurs:

ni = ne = n .

Let us multiply (5.3) by −e/me and add it to (5.4) mul-
tiplied by e/mi.

The result is

∂

∂t
[ en (ui,α − ue,α) ] =

[
e

mi
F i,α − e

me
F e,α

]
+

+ e2n

(
1

me
+

1

mi

)
Eα +

e2n

c

[ (
u e

me
× B

)
α

+

(
u i

mi
× B

)
α

]
−

− νei en

[
(ui,α − ue,α) +

me

mi
(ui,α − ue,α)

]
. (5.7)

Here

F e,α = − ∂Π
(e)
αβ

∂rβ
and F i,α =

∂ Π
(i)
αβ

∂rβ
. (5.8)

Let us introduce the velocity of the centre-of-mass sys-
tem

u =
mi u i +me u e

mi +me
.

Since mi � me,

u = u i +
me

mi
u e ≈ u i . (5.9)
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On treating Equation (5.7), we neglect the small terms
of the order of the ratio me/mi.

We obtain the equation for the current

j = en (u i − u e)

in the system of coordinates (5.9).

This equation is

∂ j ′

∂t
=
e2n

me

[
E +

1

c
(u× B )

]
− e

mec
( j ′ × B )−

− νei j
′ +

e

mi
Fi − e

me
Fe . (5.10)

The prime designates the current in the system of moving
plasma, i.e. in the rest-frame of the plasma.

Let Eu denote the electric field in this frame of reference,
i.e.

Eu = E +
1

c
u × B . (5.11)

Now we divide Equation (5.10) by νei and represent it in
the form

j ′ =
e2n

meνei
Eu − ω (e)

B

νei
j ′ × n−

− 1

νei

∂ j ′

∂t
+

1

νei

(
e

mi
Fi − e

me
Fe

)
. (5.12)



124 Chapter 5. Generalized Ohm’s Law

Here

n = B/B

and

ω (e)
B

=
eB

mec

is the electron gyro-frequency.

Thus we have derived a differential equation for the

current j ′.

The third and the fourth terms on the right do not de-

pend of magnetic field.

Let us replace them by some effective electric field

σE eff = − 1

νei

∂ j ′

∂t
+

e

νei

(
1

mi
Fi − 1

me
Fe

)
, (5.13)

where

σ =
e2n

me νei
(5.14)

is the plasma conductivity in the absence of magnetic
field.

Combine the fields (5.11) and (5.13),

E ′ = Eu + E eff , (5.15)

in order to rewrite (5.12) in the form



5.3. The General Solution 125

j ′ = σE ′ − ω (e)
B

νei
j ′ × n . (5.16)

We shall consider (5.16) as an algebraic equation in j ′,
neglecting the ∂ j ′/∂t dependence of the field (5.13).

Note, however, that

the term ∂ j ′/∂t is by no means small in the prob-

lem of the particle acceleration by a strong electric
field in astrophysical plasma.

Collisionless reconnection is the phenomenon in which
particle inertia of the current replaces classical resistivity

in allowing fast reconnection to occur.

5.3 The general solution

Let us find the solution to Equation (5.16) as a sum

j ′ = σ‖ E ′
‖ + σ⊥ E ′

⊥ + σ
H
n × E ′

⊥ .
(5.17)

Substituting (5.17) in (5.16) gives

σ ‖ = σ =
e2n

meνei
, (5.18)

σ⊥ = σ
1

1 +
(
ω (e)

B
τei
)2 , (5.19)
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σ
H

= σ
ω (e)

B
τei

1 +
(
ω (e)

B
τei
)2 . (5.20)

Formula (5.17) is called the generalized Ohm’s law.

A magnetic field in a plasma not only changes the mag-
nitude of the conductivity, but the form of Ohm’s law as

well:

the electric field and the resulting current are not par-
allel, since

σ⊥ �= σ ‖ .

Thus the conductivity of a plasma in a magnetic field is

anisotropic.

Moreover the current component j ′
H

is perpendicular to

both the magnetic and electric fields.

This component is the so-called Hall current (Fig. 5.1).

Figure 5.1: The direct (j ′‖ and j ′⊥)
and Hall’s (j ′

H
) currents in a

plasma with electric (E ′) and
magnetic (B) fields.
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5.4 The conductivity of magnetized plasma

5.4.1 Two limiting cases

The magnetic-field influence on the conductivity σ⊥ and on
the Hall conductivity σ

H
is determined by the parameter

ω (e)
B
τei .

This is the turning angle of an electron on the Larmor
circle in the intercollisional time.

Let us consider two limiting cases.

(a) The turning angle be small:

ω (e)
B
τei � 1 . (5.21)

Obviously this corresponds to the weak magnetic field or

dense cool plasma, so that the electric current is scarcely
affected by the magnetic field:

σ⊥ ≈ σ ‖ = σ ,
σ

H

σ
≈ ω (e)

B
τei � 1 . (5.22)

Thus the usual Ohm’s law with isotropic conductivity
holds.

(b) The opposite case, when the electrons spiral freely
between rare collisions of electrons with ions:

ω (e)
B
τei � 1 , (5.23)

corresponds to the strong magnetic field and hot rarefied

plasma.



128 Chapter 5. Generalized Ohm’s Law

This plasma is termed the magnetized one.

It is frequently encountered under astrophysical condi-
tions.

In this case

σ ‖ = σ ≈ (
ω (e)

B
τei
)
σ

H
≈ (

ω (e)
B
τei
)2
σ⊥ . (5.24)

Hence in a magnetized plasma, for example in the solar

corona

σ‖ � σ
H
� σ⊥ .

(5.25)

In other words,

the impact of the magnetic field on the direct cur-

rent is especially strong for the component resulting
from the electric field E ′

⊥.

The current in the E ′
⊥ direction is considerably weaker

than it would be in the absence of a magnetic field.

Why?

5.4.2 The physical interpretation

The physical mechanism of the perpendicular current j ′⊥ is

illustrated by Fig. 5.2.
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Figure 5.2: Initiation of the current in the direction of the
perpendicular field E ′

⊥ as the result of rare collisions (1, 2,

3, ...).

The primary effect of the electric field E ′
⊥ in the

presence of the magnetic field B is not the current
in the direction E ′

⊥, but rather the electric drift in

the direction perpendicular to both B and E ′
⊥.

The electric drift velocity is independent of the particle’s

mass and charge.

The electric drift of electrons and ions generates the mo-

tion of the plasma as a whole with the velocity

v = vd = c
E × B

B 2 . (5.26)

This would be the case if there were no collisions at all.

Collisions, even the rare ones, disturb the Larmor mo-

tion, leading to a displacement of the ions (not shown in
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Fig. 5.2) along the field E ′⊥, and the electrons in the oppo-
site direction (Fig. 5.2).

The small electric current j ′⊥ appears in the direction E ′
⊥.

To ensure the current across the magnetic field, the elec-
tric field is necessary, i.e. the electric field component

perpendicular to both the current j ′⊥ and the field B.

The Hall electric field balances the Lorentz force

acting on the carriers of the perpendicular electric
current in a rarely collisional plasma due to the

presence of a magnetic field,

i.e. the force

F ( j ′⊥) =
e n

c
u i⊥ ×B − e n

c
u e⊥ × B =

=
1

c
e n (u i⊥ − u e⊥) ×B (5.27)

Hence the magnitude of the Hall electric field is

E ′
H

=
1

en c
j ′⊥ × B . (5.28)

The Hall electric field in astrophysical plasma is fre-

quently set up automatically, as a consequence of small
charge separation within the limits of quasi-neutrality.

In a fully-ionized rarely-collisional plasma, the ten-
dency for a particle to spiral round the magnetic field lines

insures the great reduction in the transversal conductivity.
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However, since the dissipation of the energy of the elec-
tric current into Joule heat,

j ′ E ′ ,

is due solely to collisions between particles (if the particle
acceleration can be neglected), the reduced conductivity
does not lead to increased dissipation.

On the other hand, the Hall electric field and Hall cur-

rent can significantly modify conditions of magnetic re-
connection.

Compared with ordinary resistive MHD, the Hall MHD
reconnection is distinguished by qualitatively different

magnetic field distributions, electron and ion signatures in
reconnecting current layers.

Although the Hall effect itself is nondissipative,

j ′
H
E ′ = 0 , (5.29)

it can lead to dissipation through a turbulent “Hall cas-

cade”, magnetic energy cascading from large to small scales,
where it dissipates by ohmic decay.

The Hall effect can dominate ohmic decay of currents in
the crust of neutron stars and therefore can determine

evolution of their magnetic field.

In an initial poloidal dipole field, the toroidal currents

“twist” the field.
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The resulting poloidal currents then generate a quad-
rupole poloidal field.

5.5 Currents and charges in plasma

5.5.1 Collisional and collisionless plasmas

Let us point out another property of the generalized Ohm’s
law.

Under laboratory conditions, as a rule, one cannot ne-
glect the gradient forces.

On the contrary, these forces usually play no part in
astrophysical plasma.

We shall often ignore them.

However this simplification may be not justified in re-

connecting current layers, shock waves and other dis-
continuities.

Let us also restrict our consideration to very slow (say
hydrodynamic) motions of plasma.

These motions are supposed to be so slow that the fol-
lowing three conditions are fulfilled.

(A) It is supposed that

ω =
1

τ
� νei or νei τ � 1 , (5.30)

where τ is a characteristic time of the plasma motions.

Thus
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departures of actual distribution functions for elec-

trons and ions from the Maxwellian distribution are
small.

This allows us to handle the transfer phenomena in linear

approximation.

Moreover, if a single-fluid model makes a sense, the

electrons and ions could have comparable temperatures,
ideally, the same one T which is the temperature of the

plasma as a whole:

Te = Tp = T .

(B) We neglect the electron inertia in comparison with
that of the ions and make use of (5.9).

This condition is usually written in the form

ω � ω (i)
B

=
eB

mic
. (5.31)

Thus

the plasma motions have to be so slow that their fre-
quency is smaller than the lowest gyro-frequency

of the particles.

Recall that the gyro-frequency of ions

ω (i)
B

� ω (e)
B
.

(C) The third condition
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ω (e)
B
τei � 1 . (5.32)

Hence we can use the isotropic conductivity σ.

The generalized Ohm’s law assumes the form which is
specific to the ordinary magnetohydrodynamics (MHD):

j ′ = σ

(
E +

1

c
u × B

)
. (5.33)

The MHD approximation is the subject of the next chapter.

Numerous applications of MHD to astrophysical plasma
should be discussed in the remainder of the lectures.

∗ ∗ ∗

In the opposite case, when the parameter

ω (e)
B
τei � 1 ,

charged particles revolve around magnetic field lines,

and a typical particle may spend a considerable time in a
region of a size of the order of the gyroradius.

Hence, if the length scale of a phenomenon is much larger

than the gyroradius, we may expect the hydrodynamic-
type models to work.

It appears that, even when the parameter

ω (e)
B
τei → ∞ ,
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(like in the solar corona) and collisions are negligible, the 2D
quasi-hydrodynamic description of plasma, the Chew-

Goldberger-Low(CGL) approximation is quite useful.

This is because

a strong magnetic field makes a plasma, even a col-
lisionless one, more ‘interconnected’, more hydro-

dynamic in the directions perpendicular to the mag-
netic field.

As for the motion of particles along the magnetic field,

some important kinetic features still are significant.

Chew et al.: “A strictly hydrodynamic approach to the
problem is appropriate only when some special circumstance

suppresses the effects of pressure transport along the
magnetic lines”.

There is ample experimental evidence that strong mag-

netic fields do make astrophysical plasmas behave like hy-
drodynamic charged fluids.

This does not mean, of course, that there are no pure

kinetic phenomena in such plasmas.

There are many of them indeed.

The most interesting of them is magnetic reconnec-
tion in the solar corona and solar wind.
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5.5.2 Volume charge and quasi-neutrality

While deriving the generalized Ohm’s law, the exact charge

neutrality of plasma was assumed:

∑
i

Zini = ne ,

i.e. the absolute absence of the volume charge in plasma:

ρ q = 0 .

However there is no need for such a strong restriction.

It is sufficient to require quasi-neutrality, i.e.
∑

i

Zini − ne


n−1

e � 1 .

So

the volume charge density has to be small in com-

parison to the plasma density.

Once the volume charge density

ρ q = e


∑

i

Zini − ne


 �= 0 ,

yet another term must be taken into account in the Ohm’s
law:

j q
u = ρ q u . (5.34)

This is the so-called convective current.
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It must be added to the conductive current (5.17).

The volume charge, the associated electric force ρ q E

and the convective current ρ q u are of great importance
in electrodynamics of relativistic objects such as black

holes and pulsars.

Charge-separated plasmas originate in magnetosphe-
res of pulsars and rotating black holes, e.g., a super-
massive black hole in active galactic nuclei (AGN).

A strong electric field appears along the magnetic field
lines.

The parallel electric field accelerates migratory electrons
and/or positrons to ultra-relativistic energies.

∗ ∗ ∗

Volume charge can be evaluated in the following manner.

From Maxwell’s equation

div E = 4πρ q

we estimate

ρ q ≈ E

4πL
. (5.35)

On the other hand, the equation of plasma motion yields

eneE ≈ p

L
≈ nekB

T

L
,

so that
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E ≈ k
B
T

eL
. (5.36)

On substituting (5.36) in (5.35), we find

ρ q

ene
≈ k

B
T

eL

1

4πL

1

ene
=

1

L2

(
k

B
T

4πe2 ne

)

or

ρ q

ene
≈ r 2

DH

L2 .

(5.37)

Since the usual concept of plasma implies that the

Debye radius

r
DH

� L , (5.38)

the volume charge density is small in comparison with the

plasma density.

When we consider phenomena with a length scale L
much larger than the Debye radius r

DH
and a time scale τ

much larger than the inverse the plasma frequency, the
charge separation can be neglected.

5.6 Practice: Exercises and Answers

Exercise 5.1 Consider a plasma system with given dis-

tributions of magnetic and velocity fields.



5.6. Practice: Exercises and Answers 139

Is it possible to use Equation (5.12) in order to estimate
the growth rate of electric current and, as a consequence, of

magnetic field in such a system, for example, a protostar?

Exercise 5.2 Evaluate the characteristic value of the par-
allel conductivity (5.18) in the solar corona.

Answer. It follows from formula (5.18) that

σ ‖ =
e2n

me
τei ∼ 1016 − 1017 , s−1 . (5.39)

Exercise 5.3 Estimate the parameter ω (e)
B
τei in the corona

above a sunspot.

Answer. Just above a large sunspot the field strength
can be as high as B ≈ 3000 G .

With τep ≈ 0.1 s, we obtain

ω (e)
B
τei ∼ 1010 rad � 1 .

So, for anisotropic conductivity in the solar corona, the
approximate formulae (??) can be well used.
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Chapter 6

Single-Fluid Models for
Astrophysical Plasma

Single-fluid models are the simplest but sufficient
approximation to describe many large-scale low-

frequency phenomena in astrophysical plasma:
motions driven by strong magnetic fields, accre-

tion disks, and relativistic jets.

6.1 Derivation of the single-fluid equations

6.1.1 The continuity equation

In order to consider a plasma as a single medium, we have
to sum each of the three transfer equations over all kinds

of particles.

Let us start from the continuity equation

∂nk
∂t

+
∂

∂rα
nk uk,α = 0 .

141
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With allowance for the definition of the plasma mass
density ρ, we have

∂ρ

∂t
+ div


∑

k

ρkuk


 = 0 . (6.1)

The mean velocities of motion for all kinds of particles
are supposed to be equal to the plasma hydrodynamic

velocity:

u1 (r, t) = u2 (r, t) = · · · = u (r, t) , (6.2)

as a result of action of the mean collisional force.

However this is not a general case.

In general, the mean velocities are not the same, but a
frame of reference can be chosen in which

ρu =
∑
k

ρkuk . (6.3)

Then from (6.1) and (6.3) we obtain the usual continuity
equation

∂ρ

∂t
+ div ρu = 0 .

(6.4)

We shall consider both cases.
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6.1.2 The momentum conservation law

In the same way, we handle the momentum equation

ρk
d (k) uk,α
dt

= − ∂

∂rβ
p

(k)
αβ + ρ q

k Eα +
1

c
( j q

k ×B )α +

+ 〈F (c)
k,α (r, t) 〉 v .

On summing over all kinds of particles, we obtain the

equation

ρ
d uα
dt

= − ∂

∂rβ
pαβ + ρ qEα +

1

c
( j× B )α +

+
∑
k

〈F (c)
k,α (r, t) 〉v . (6.5)

Here the volume charge is

ρ q =
∑
k

nkek =
1

4π
div E , (6.6)

and the electric current is

j =
∑
k

nkek uk =
c

4π
rot B − 1

4π

∂E

∂t
. (6.7)

The electric and magnetic fields, E and B, are averaged
fields associated with the total electric charge density ρ q

and the total current j.

They satisfy the macroscopic Maxwell equations.
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Since elastic collisions do not change the total momen-
tum,

∑
k

〈F (c)
k,α (r, t) 〉v = 0 . (6.8)

On substituting (6.6)–(6.8) in Equation (6.5), the latter
gives the momentum conservation law

ρ
d uα
dt

= − ∂

∂rβ
pαβ + Fα(E,B) .

(6.9)

Here the electromagnetic force is written in terms of the
electric and magnetic fields:

Fα(E,B) = − ∂

∂t

(E ×B )α
4πc

− ∂

∂rβ
Mαβ . (6.10)

The tensor

Mαβ =
1

4π

[
−EαEβ − BαBβ +

1

2
δαβ (E2 + B2 )

]
(6.11)

is the Maxwellian tensor of stresses.

The divergent form of the momentum conservation

law is
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∂

∂t


 ρ uα +

(E × B )α
4πc


+

∂

∂rβ
( Παβ + Mαβ ) = 0 .

(6.12)

The operator ∂/∂t acts on two terms:

ρu is the momentum of the plasma in a unit volume,

E×B/4πc is the momentum of the electromagnetic field.

The divergency operator ∂/∂rα acts on

Παβ = pαβ + ρ uαuβ , (6.13)

which is the momentum flux tensor

Παβ =
∑
k

Π
(k)
αβ , (6.14)

see definition (4.10).

Thus the pressure tensor

pαβ = p δαβ + παβ , (6.15)

where

p =
∑
k

pk

is the total plasma pressure, the sum of partial pressures,

and
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παβ =
∑
k

π
(k)
αβ (6.16)

is the viscous stress tensor which allows for the trans-
port of momentum from one layer of the plasma flow to the
other layers so that relative motions inside the plasma are

damped out.

The momentum conservation law (6.12) is applied for a
wide range of conditions in plasmas like fluid relativistic

flows, for example, astrophysical jets.

The assumption that the astrophysical plasma behaves
as a continuum medium is excellent in the cases in which

we are often interested:

the Debye length and the Larmor radii are much
smaller than the plasma flow scales.

On the other hand, going from the multi-fluid description

to a single-fluid model is a serious damage because we
loose an information not only on the small-scale dynamics
of the electrons and ions but also on the high-frequency

processes in plasma.

The single-fluid equations describe well the low-
frequency large-scale behavior of plasma in as-

trophysical conditions.



6.1. Single-Fluid Equations 147

6.1.3 The energy conservation law

In a similar manner as above, the energy conservation law
is derived.

We sum Equation (4.23) over k and then substitute in
the resulting equation the total electric charge (6.6) and
the total electric current (6.7) expressed in terms of the

electric field E and magnetic field B.

The following divergent form of the energy conservation

law is obtained:

∂

∂t


ρu2

2
+ ρ ε+

E2 + B2

8π


+

+
∂

∂rα


 ρ uα


u2

2
+ w


 +

c

4π
(E ×B )α + παβ uβ +

+ qα ] =
(
uαF

(c)
α

)
ff

+ L (rad) (r, t) . (6.17)

On the left-hand side of this equation, an additional term

has appeared:

the operator ∂/∂t acts on the energy density of the elec-

tromagnetic field

W =
E2 +B2

8π
. (6.18)

The divergency operator ∂/∂rα acts on the Poynting

vector, the electromagnetic energy flux
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G =
c

4π
[E ×B ] . (6.19)

The right-hand side of Equation (6.17) contains the total
work of friction forces in unit time on unit volume

(
uαF

(c)
α

)
ff

=
∑
k

(
F

(c)
k,α uk,α

)
=

=
∑
k

uk,α
∫
v
mk v

′
α

(
∂fk
∂t

)
c
d 3v . (6.20)

This work related to the relative motion of the plasma
components is not zero.

Recall that we consider general case (6.3).

By contrast, the total heat release under elastic colli-
sions between particles of different kinds is

∑
k

Q
(c)
k (r, t) =

∑
k

∫
v

mk (v ′)2

2

(
∂fk
∂t

)
c
d 3v = 0 . (6.21)

Elastic collisions in a plasma conserve both the total
momentum and the total energy.

If we accept condition (6.2) then the collisional heat-

ing (6.20) by friction force is also equal to zero.

In this limit, there is not any term which contains the

collisional integral.

Elastic collisions have done a good job.
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Inelastic collisions are important in radiative cooling
and heating.

In optically thin plasma with collisional excitations of

ions, the power of radiation from a unit volume of plasma
is proportional to the square of plasma density n (cm−3):

L (rad) � −n2 q(T ) . (6.22)

The function q(T ) is called the radiative loss function.

It depends strongly on the temperature T but weakly on
the plasma density n (Fig. 6.1).

Figure 6.1: Radiative loss function vs. temperature at fixed
values of plasma density: 109 cm−3 (solid curve), 1010 cm−3

(dotted curve), 1011 cm−3 (dashed curve).
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6.2 Basic assumptions and the MHD equations

6.2.1 Old simplifying assumptions

As we saw above, the transfer equations determines the

behavior of different kinds of particles in a plasma once
two conditions are complied with:

(a) many collisions occur in a characteristic time τ of a
phenomenon under consideration:

τ � τc , (6.23)

(b) the mean free path λc is significantly smaller than
the distance L, over which macroscopic quantities change

considerably:

L� λc . (6.24)

Once these conditions are satisfied, we can close the set of
transfer equations, as was discussed in Sect. 4.6.

While considering the generalized Ohm’s law, other three
assumptions have been made.

The first condition can be written in the form

τ � τei , (6.25)

where τei is the electron-ion collisional time, the longest

collisional relaxation time.
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Thus the electrons and ions have comparable tempera-
tures, ideally, the same temperature T .

Second, we neglect the electron inertia in comparison
with that of the ions.

This condition is usually written as

τ � (
ω (i)

B

)−1
, where ω (i)

B
=

eB

mi c
. (6.26)

Thus the plasma motions have to be so slow that their
frequency ω = 1/τ is smaller than the lowest gyro-frequency

of the particles.

The third condition,

ω (e)
B
τei � 1 , (6.27)

is necessary to write down Ohm’s law in the form

j = σ

(
E +

1

c
v × B

)
+ ρ q v . (6.28)

Here v is the velocity of plasma, E and B are the electric

and magnetic fields in the ‘laboratory’ system of coordi-
nates, where we measure the velocity v.

Accordingly, the field

E v = E +
1

c
v ×B (6.29)

is the electric field in a frame of reference related to the

plasma.
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Complementary to the restriction (6.24) on the charac-
teristic length L, we have to add the condition

L� r
DH
, (6.30)

where r
DH

is the Debye-Hückel radius.

Then the volume charge ρ q is small in comparison with

the plasma density ρ.

Under the conditions listed above, we use the general

hydrodynamic-type equations: the conservation laws for
mass (6.4), momentum (6.5) and energy (6.17).

The general hydrodynamic-type equations have a

much wider area of applicability in astrophysics
than the equations of ordinary MHD derived be-

low.

The latter will be simpler than the equations derived above.

Therefore additional simplifying assumptions are
necessary.

Let us introduce them.

6.2.2 New simplifying assumptions

First assumption:

the conductivity σ is large, the electromagnetic processes
being not very fast.

Then, in the Maxwell’s equation
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rotB =
4π

c
j +

1

c

∂E

∂t
,

we ignore the displacement current in comparison to the
conductive one.

The corresponding condition is found by evaluating the

currents as follows

1

c

E

τ
� 4π

c
j or ωE � 4πσE .

Thus

ω � 4πσ .
(6.31)

In the same order to the small parameter ω/σ, we ne-
glect the convective current in comparison with the con-

ductive current in Ohm’s law.

Actually,

ρ q v ≈ v div E
1

4π
≈ L

τ

E

L

1

4π
≈ ω

4π
E � σE ,

once the condition (6.31) is satisfied.

The conductivity of astrophysical plasma is often very
high (Exercise 5.1).

This is why condition (6.31) is satisfied up to frequencies

close to optical ones.
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Neglecting the displacement current and the con-
vective current, Maxwell’s equations and Ohm’s law re-

sult in the following relations:

j =
c

4π
rotB , (6.32)

E = − 1

c
v ×B +

c

4πσ
rotB , (6.33)

ρ q = − 1

4πc
div (v ×B ) , (6.34)

divB = 0 , (6.35)

∂B

∂t
= rot (v × B ) +

c2

4πσ
∆B . (6.36)

Once B and v are given, the current j, the electric field E,
and the volume charge ρ q are determined by formulae (6.32)—

(6.34).

Thus

the problem is reduced to finding the interaction

of two vector fields: the magnetic field B and the
hydrodynamic velocity field v.

As a consequence, the approach under discussion is known
as magnetohydrodynamics (MHD).

The corresponding equation of motion is obtained by
substitution of (6.32)–(6.34) in the equation of momentum

transfer (6.5).
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With the viscous forces as usually written in hydrody-
namics, we have

ρ
dv

dt
= −∇p + ρ q E − 1

4π
B × rotB+

+ η∆v +

(
ζ +

η

3

)
∇ divv . (6.37)

Here η is the first viscosity coefficient, ζ is the second
viscosity coefficient (see Landau and Lifshitz, Fluid Me-

chanics).

Formulae for these coefficients and the viscous forces

should be derived from the moment equation for the pres-
sure tensor.

∗ ∗ ∗

The second additional assumption has to be intro-
duced now.

Treating Equation (6.37), the electric force ρ q E can

be ignored in comparison to the magnetic one if

v2 � c2 , (6.38)

that is in the non-relativistic approximation.

To make certain that this is true, evaluate the electric
force

ρ qE ≈ 1

4πc

vB

L

vB

c
≈ B2

4π

1

L

v2

c2
(6.39)
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and the magnetic force

1

4π
|B × rotB | ≈ B2

4π

1

L
. (6.40)

Comparing (6.39) with (6.40), we see that the electric force

is a factor of v2/c2 short of the magnetic one.

In a great number of astrophysical applications, the plasma

velocities fall far short of the speed of light.

The Sun is a good case in point.

The largest velocities in coronal mass ejections (CMEs)

do not exceed 3 × 108 cm/s.

Thus,

we neglect the electric force acting upon the volume

charge in comparison with the magnetic force.

However the relativistic objects like accretion disks
near rotating black holes (Novikov and Frolov, 1989), and

pulsar magnetospheres are at the other extreme.

The electric force plays a crucial role in electrodynamics

of relativistic objects.

6.2.3 Non-relativistic MHD

With the assumptions made above (2 + 3 + 2),

the considerable simplifications have been obtained;

and now we write the following set of equations of

non-relativistic MHD:
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∂

∂t
ρ vα = − ∂

∂rβ
Π ∗
αβ , (6.41)

∂B

∂t
= rot (v ×B ) + νm ∆B , (6.42)

divB = 0 , (6.43)

∂ρ

∂t
+ div ρv = 0 , (6.44)

∂

∂t


ρv2

2
+ ρε+

B2

8π


 = − div G , (6.45)

p = p (ρ, T ) . (6.46)

The momentum of electromagnetic field does not appear
on the left-hand side of (6.41).

It is negligibly small in comparison to the plasma mo-

mentum ρ vα.

This fact is a consequence of neglecting the displacement
current.

On the right-hand side of (6.41), the asterisk refers to

the total momentum flux tensor Π ∗
αβ, which equals

Π ∗
αβ = ρ vαvβ +

(
p δαβ − σv

αβ

)
+

+
1

4π


B2

2
δαβ −BαBβ


 . (6.47)
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In Equation (6.42)

νm =
c2

4πσ
(6.48)

is the magnetic viscosity.

It plays the same role as the kinematic viscosity ν = η/ρ
in the equation of motion.

The vector G is defined as the energy flux

Gα = ρ vα


v2

2
+ w


+

1

4π
[B × (v ×B ) ]α−

− νm

4π
(B × rotB )α − σv

αβ vβ − κ∇α T . (6.49)

The Poynting vector as a part in (6.49) is

G
P

=
1

4π
B × (v ×B ) − νm

4π
B × rot B . (6.50)

The energy flux due to friction is written as the contraction

of the velocity vector v and the viscous stress tensor σv
αβ .

6.2.4 Energy conservation

The non-relativistic MHD equations are frequently used to

model solar flares, eruptive prominences, etc.

A goal of such studies is to deduce how energy of mag-
netic field is stored and then suddenly released to drive

these phenomena.
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However

most models use a simple energy equation,

the discussion often centers on the over-simplified in-

terpretation or

just comparison of magnetic field structure in the mod-
els with corresponding features observed in emission.

With new capabilities to study X-ray and EUV emis-
sion from Hinode and complementary observations from

SOHO, RHESSI and other satellites, the models advance
to more quantitative results.

We have to develop the MHD models that include ra-

diative losses and other dissipative processes, the energy
transport by anisotropic heat conduction.

The equation of state (6.46) can be rewritten in other

thermodynamic variables.

In order to do this, we have to make use of the thermo-
dynamic identities

dε = T ds+
p

ρ2 dρ and dw = T ds+
1

ρ
dp .

Here s is the entropy per unit mass.

We transform the energy conservation law (6.45) from

the divergent form to the hydrodynamic one:

ρ T
ds

dt
=
νm

4π
(rot B)2 + σv

αβ

∂vα
∂rβ

+

+ divκ∇T + L (rad) (r, t) . (6.51)
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Thus

the heat abundance change dQ = ρ T ds in a mov-
ing element of unit volume is a sum of the Joule

and viscous heating, conductive heat redistribution
and radiative cooling.

6.2.5 Relativistic magnetohydrodynamics

Relativistic MHD models are of considerable interest in sev-
eral areas of modern astrophysics.

The theory of gravitational collapse and models of super-
nova explosions are based on relativistic hydrodynam-

ics for a star.

The effects of deviations from spherical symmetry due to
magnetic field require the use of relativistic MHD mod-

els.

Relativistic hydrodynamics is presumably applied to the

so-called quark-gluon plasma which is the primordial
state of hadronic matter in the Universe.

When the medium interacts electromagnetically and is

highly conducting, the simplest description is in terms of
relativistic MHD.

From the mathematical viewpoint, the relativistic MHD
was mainly treated in the framework of general relativity.

This means that the MHD equations were studied in

conjunction with Einstein’s equations.
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Lichnerowicz (1967) has made a thorough and deep in-
vestigation of the initial value problem.

In many applications, however, one neglects the gravi-

tational field generated by the conducting medium in com-
parison with the background gravitational field

as well as

in many cases one simply uses special relativity.

Such relativistic MHD is much simpler than the full gen-
eral relativistic theory.

So more detailed results can be obtained (Novikov and
Frolov, 1989).

6.3 Magnetic flux conservation. Ideal MHD

6.3.1 Integral and differential forms of the law

Equations (6.44), (6.41), and (6.45) are the conservation
laws for mass, momentum, and energy, respectively.

Let us show that Equation (6.42):

∂B

∂t
= rot (v ×B ) + νm ∆B ,

with νm = 0, is the magnetic flux conservation law.

Let us consider the time derivative of the vector B flux

through a surface S moving with the plasma (Fig. 6.2).

According to the known formula of vector analysis (see

Smirnov, 1965), we have
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B
S

S
L

d

v

v

x
y

z

Figure 6.2: The magnetic field B flux through the surface S

moving with a plasma with velocity v.

d

dt

∫
S

B · dS =
∫
S

(
∂B

∂t
+ v div B + rot (B× v )

)
· dS .

Since div B = 0,

d

dt

∫
S

B · dS =
∫
S

(
∂B

∂t
− rot (v ×B )

)
· dS ,

or, making use of Equation (6.42),

d

dt

∫
S

B · dS = νm

∫
S

∆B · dS .

(6.52)

Thus, if we cannot neglect magnetic viscosity νm, then

the change rate of magnetic flux through a sur-
face moving together with a conducting plasma is
proportional to the magnetic viscosity.
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The right-hand side of (6.52) can be rewritten with the
help of the Stokes theorem:

d

dt

∫
S

B · dS = − νm

∮
L

rot B · d l .

Here L is the ‘liquid contour’ bounding the surface S.

By using equation

j =
c

4π
rotB ,

we have

d

dt

∫
S

B · dS = − c

σ

∮
L

j · d l .

(6.53)

The change rate of flux is proportional to resistivity σ−1

of the plasma.

Equation (6.53) is equivalent to the differential Equa-
tion (6.42) and presents an integral form of the magnetic

flux conservation law.

The magnetic flux through any surface moving

with the plasma is conserved, once the electric
resistivity σ−1 can be ignored.

When is it possible to neglect resistivity of plasma?

The relative role of a dissipation process can be evaluated

as follows.
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Let us pass on to the dimensionless variables

r∗ =
r

L
, t∗ =

t

τ
, v∗ =

v

v
, B∗ =

B

B0
.

On substituting them in (6.42) we obtain

B0

τ

∂B∗

∂t∗
=
vB0

L
rot∗ (v∗ ×B∗ ) + νm

B0

L2 ∆∗ B∗ .

Now we normalize this equation with respect to its left-hand

side, i.e.

∂B∗

∂t∗
=
vτ

L
rot∗ (v∗ ×B∗ ) +

νmτ

L2 ∆∗ B∗ .

This dimensionless equation contains two dimension-
less parameters.

The first one,

δ =
vτ

L
,

will be discussed later on.

Here, for simplicity, we assume δ = 1.

The second parameter,

Rem =
L2

νm τ
=
vL

νm
,

(6.54)

is termed the magnetic Reynolds number, by analogy with

the hydrodynamic Reynolds number
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Re =
vL

ν
.

Omitting the asterisk, we write the dimensionless equa-
tion

∂B

∂t
= rot (v × B ) +

1

Rem
∆B . (6.55)

The larger the magnetic Reynolds number, the

smaller the role played by magnetic viscosity.

So the magnetic Reynolds number is the measure of a rel-
ative importance of resistivity.

If

Rem � 1 ,

we neglect the plasma resistivity and, as a consequence,

magnetic field diffusion and dissipation.

On the contrary, in laboratory, e.g., in devices for study-

ing reconnection, because of a small value L2, the magnetic
Reynolds number is usually not large:

Rem ∼ 1 − 3 .

In this case, the resistivity has a dominant role, and dissi-
pation is important.
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6.3.2 The ideal MHD

Under astrophysical conditions, owing to the low resistiv-
ity of plasma and the enormously large length scales, the

magnetic Reynolds number is usually huge:

Rem > 1010

(e.g., Exercise 6.1).

Thus, in a great number of problems, it is sufficient to con-

sider a medium with infinite conductivity:

Rem � 1 .

Furthermore the usual Reynolds number can be also large
(see, however, Exercise 6.2):

Re � 1 .

Let us also assume the heat exchange to be of minor

importance.

This assumption is not universally true either.

Sometimes the thermal conductivity is so effective that

an astrophysical plasma must be considered as isothermal,
rather than adiabatic.

However, conventionally,

while treating the ‘ideal medium’, all dissipative
coefficients as well as the thermal conductivity are
set equal to zero:
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νm = 0 , η = ζ = 0 , κ = 0 .

The complete set of the ideal MHD equations has two

equivalent forms.

The first one is the transfer equations:

∂v

∂t
+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × rot B ,

∂B

∂t
= rot (v × B) , divB = 0 , (6.56)

∂ρ

∂t
+ div ρv = 0 ,

∂s

∂t
+ (v · ∇) s = 0 ,

p = p (ρ, s) .

The divergent form corresponds to the conservation
laws for energy, momentum, mass and magnetic flux:

∂

∂t


ρv2

2
+ ρε+

B2

8π


 = − div G , (6.57)

∂

∂t
ρ vα = − ∂

∂rβ
Π ∗
αβ , (6.58)

∂ρ

∂t
= − div ρv , (6.59)
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∂B

∂t
= rot (v ×B ) , (6.60)

divB = 0 , (6.61)

p = p (ρ, s) . (6.62)

Here the energy flux and the momentum flux tensor are

G = ρv


v2

2
+ w


+

1

4π

(
B2 v − (B · v)B

)
(6.63)

and

Π ∗
αβ = p δαβ + ρ vαvβ +

1

4π


B2

2
δαβ −BαBβ


 . (6.64)

6.3.3 The ‘frozen field’ theorem

The magnetic flux conservation law (6.60) written in the
integral form

d

dt

∫
S

B · dS = 0

allows us to represent the magnetic field as a set of field

lines attached to the medium, as if they were ‘frozen
into’ it.

For this reason, (6.60) is referred to as the ‘freezing-in’

equation.
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The “frozen field” theorem can be formulated as follows.

In the ideally conducting medium, the field lines
move together with the plasma. A medium mo-

tion conserves not only the magnetic flux but
each of the field lines as well.

Let us imagine a thin tube of field lines (Fig. 6.3).

B

L

v

x
y

z

Sd

FP
FP

Figure 6.3: The field-flux tube through the surface dS moves
with a plasma with velocity v. L is the “liquid contour”
bounding the surface dS. The “fluid particles” (FP ) that

are initially in this flux tube remain in the same tube.

There is no magnetic flux through any part of the surface
formed by the boundary field lines that intersect the closed

curve L.

Hence, the “fluid particles” that are initially in the

same flux tube must remain in the flux tube.
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In ideal MHD flows, magnetic field lines are therefore
materialized and are unbreakable because the flux tube

links the same fluid particles.

As a result its topology cannot change.

Fluid particles which are not initially on a common field
line cannot become linked by one later on.

This general topological constraint restricts the
ideal MHD motions, forbidding a lot of motions

that would otherwise appear.

Conversely, the fluid particle motion, whatever its complex-
ity, may create situations where the magnetic field structure

becomes itself very complex.

∗ ∗ ∗

In general, the field intensity B is a local quantity.

However the magnetic field lines (even in vacuum) are
integral characteristics of the field.

Their analysis becomes more complicated.

Nonetheless, an investigation of non-local structures of

magnetic fields is fairly important in plasma astrophysics.

The geometry of the field lines appears in different ways

in the equilibrium criteria for astrophysical plasma.

Much depends on whether the field lines are concave or
convex, on the so-called specific volume of magnetic flux

tubes.
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However even more depends on the presence of X-type
points, as well as on other topological characteristics, e.g.

the global magnetic helicity.

6.4 Magnetic reconnection

Reconnection of magnetic field lines is the physical process
which involves a breakdown of the “frozen field” theorem.

The effects of electric resistivity, normally negligible
in the large, become locally dominant

with dramatic consequences in the large-scale plasma
flows and magnetic field configuration.

Reconnection changes topology of magnetic field.

The origin of the concept of reconnection lies in an at-
tempt by Giovanelli (1946) to explain solar flares.

Reconnection is the means by which energy stored in
magnetic fields is released rapidly to produce such phe-
nomena as solar flares and magnetospheric substorms.

Furthermore, reconnection plays important roles in many
areas of astrophysics.

Depending on complexity of fields and conditions, re-
connection can occur over an extended region in space or

can be “patchy” and “unpredictable”.

For example, in the Earth’s magnetosphere the recon-
necting current layers (RCLs) are formed by the inter-

action between the solar wind and the geomagnetic field.
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Such RCLs have finite extents, and their boundary
conditions often change rapidly.

On the contrary,

in the solar wind, the magnetic field orientations

on the two sides of the interplanetary current
layers are usually well defined, and the boundary

conditions seem to be relatively stable.

Phan et al. (2006) report the 3-spacecraft observations
of plasma flow associated with large-scale reconnection

in the solar wind (Fig. 6.4).

In the most astrophysical situations, the reconnec-
tion process is predictable and occurs in an inter-

nal scale of a phenomenon, which is responsible to
the initial and boundary conditions.

In the solar wind the scale of a current layer (CL) around
the Sun can be very large (Fig. 6.5).

The current layer (CL) separates the fields of nearly op-

posite directions.

The average plane of the layer is approximately the plane

of the equator of the Sun’s average magnetic dipole (M)
field.

On the other hand, the high-speed solar wind that orig-
inates in coronal holes is permeated by evolved Alfvén-

type fluctuations associated with MHD turbulence.
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Figure 6.4: The Wind , ACE and Cluster spacecraft on 2
February 2002: The spacecraft positions are shown in units

of Earth radius (R
E
) and in geocentric solar ecliptic coor-

dinates.
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j

B

CL

Ω
M

Figure 6.5: A “wavy ecliptic current” layer (CL). The Sun
is the center of an extensive layer.

The spacecraft Wind allows us to study reconnection in

this turbulent flow.

The Wind observations demonstrate that

reconnection is one way in which the solar wind
turbulence is dissipated and the high-speed

wind is heated far from the Sun.

In the solar wind, the kinetic and thermal energies of plasma

exceed the magnetic energy.

We neglect the magnetic force as compared to the inertia
force of moving plasma and its pressure gradient.

We call such a process as reconnection in a weak mag-

netic field.

Another example of this phenomenon is the photospheric
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reconnection.

Reconnection in a strong magnetic field is a fundamental
feature of astrophysical plasmas like the solar corona.

Such reconnection explains an accumulation of magnetic

energy and a sudden release of this energy, a flare.

This phenomenon is accompanied by fast ejections of

plasma, powerful flows of heat and hard electromagnetic
radiation, by acceleration of particles.

6.5 Practice: Exercises and Answers

Exercise 6.1. Estimate the magnetic Reynolds number in

the solar corona.

Answer.

Taking characteristic values of the parallel conductivity

as estimated in Exercise 5.1:

σ ‖ = σ ∼ 1016 − 1017 s−1 ,

we obtain

Rem =
vL

νm
∼ 1011 − 1012 , (6.65)

if the length and velocity, L ∼ 104 km and v ∼ 10 km s−1.

Exercise 6.2. Show that
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in the solar corona, usual viscosity of plasma can
be a much more important dissipative mechanism

than electric resistivity.

Answer.

The characteristic value of kinematic viscosity

ν =
η

ρ
≈ 3 × 1015 cm2 s−1.

Here Tp ≈ 2×106 K and np ≈ ne ≈ 2×108 cm−3 were taken

as the typical proton temperature and density.

If the length and velocity, L ∼ 109 cm and v ∼ 106 cm s−1,

then the ordinary Reynolds number

Re =
vL

ν
∼ 0.3 . (6.66)

Thus

Rem � Re .
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MHD in Astrophysics

MHD is appropriate for many phenomena in as-

trophysical plasma, that take place on a relatively
large scale.

The non-relativistic MHD is applied to dynamo

theory, flows in the solar atmosphere, flares, coro-
nal heating, solar and stellar winds.

Relativistic MHD describes well accretion disks

near relativistic objects, and relativistic jets.

7.1 The main approximations in ideal MHD

7.1.1 Dimensionless equations

The equations of MHD constitute a set of nonlinear dif-
ferential equations in partial derivatives.

The order of the set is rather high, and its structure is

complicated.

177
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To formulate a problem, we have to know the initial and
boundary conditions admissible by this set of equations.

To do this, in turn, we have to know the type of equa-
tions, in the sense adopted in mathematical physics.

To formulate a problem, we usually use one or another

approximation, which makes it possible to point up and
isolate the main effect.

For instance, if the magnetic Reynolds number is
small, a plasma moves comparatively easily with respect

to magnetic field.

This is the case in laboratory and technical devices.

The opposite approximation is that of large magnetic

Reynolds numbers, when the magnetic field ‘freezing in’
takes place in plasma.

This approximation is quite characteristic of the astro-

physical plasma.

How can we isolate the main effect in a phenomenon

and correctly formulate the problem? – From the above
examples, the following rule suggests itself:

take the dimensional parameters of a phenomenon,

combine them into dimensionless combinations, cal-
culate their values, and use a corresponding approx-

imation in the dimensionless equations.

Such an approach is effective in hydrodynamics.

Let us start with the ideal MHD equations:
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∂v

∂t
+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × rot B , (7.1)

∂B

∂t
= rot (v ×B) , (7.2)

∂ρ

∂t
+ div ρv = 0 , (7.3)

∂s

∂t
+ (v · ∇) s = 0 , (7.4)

divB = 0 , (7.5)

p = p (ρ, s) . (7.6)

Let the quantities

L, τ, v, ρ0 , p0 , s0 , B0

be the characteristic values of length, time, velocity, density,
pressure, entropy and field strength, respectively.

Rewrite Equations (7.1)–(7.6) in the dimensionless vari-

ables

r∗ =
r

L
, t∗ =

t

τ
, . . . B∗ =

B

B0
.

Omitting the asterisk, we obtain the equations in dimen-

sionless variables:
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ε2
{
1

δ

∂v

∂t
+ (v · ∇)v

}
= − γ2 ∇p

ρ
− 1

ρ
B × rot B , (7.7)

∂B

∂t
= δ rot (v × B) , (7.8)

∂ρ

∂t
+ δ div ρv = 0 , (7.9)

∂s

∂t
+ δ (v · ∇) s = 0 , (7.10)

divB = 0 , (7.11)

p = p (ρ, s) . (7.12)

Here

δ =
vτ

L
, ε2 =

v2

V 2
A

, γ2 =
p0

ρ0V 2
A

(7.13)

are three dimensionless parameters;

V
A

=
B0√
4πρ0

(7.14)

is the characteristic value of the Alfvén speed (see Exer-

cise 7.1).
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If the gravitational force is taken into account, Equa-
tion (7.7) contains another dimensionless parameter,

gL/V 2
A
,

where g is the gravitational acceleration.

The analysis of these parameters allows us to separate

the approximations which are possible in the ideal MHD.

7.1.2 Weak magnetic fields in astrophysical plasma

We begin with the assumption that

ε2 � 1 and γ2 � 1 . (7.15)

As is seen from Equation (7.7), in the zero-order approxi-

mation relative to the small parameters

ε−2 and γ−2 ,

we neglect the magnetic force as compared to the inertia
force and the pressure gradient.

In subsequent approximations, the magnetic effects are
treated as small corrections to the hydrodynamic ones.

A lot of problems of plasma astrophysics are solved in
this approximation, termed the weak magnetic field ap-

proximation.

Among the simplest of them are the ones concerning the

weak field’s influence on hydrostatic equilibrium.
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An example is the problem of the influence of magnetic
field on the equilibrium of a self-gravitating plasma ball (a

star, the magnetoid of quasar’s kernel etc.).

Some other problems are in fact analogous to the men-

tioned ones.

They are called kinematic problems, since

they treat the influence of a given plasma flow on

magnetic field; the reverse influence is considered
to be negligible.

Such problems are reduced to finding the magnetic field
resulting from the known velocity field.

An example is the magnetic field amplification and sup-
port by stationary plasma flows (magnetic dynamo).

The simplest example is the magnetic field amplification
by differential rotation.

A leading candidate to explain the origin of large-scale
magnetic fields in astrophysical plasma is the turbulent

dynamo theory.

7.1.3 Strong magnetic fields in plasma

The opposite approximation – that of the strong field –

reflects the specificity of MHD to a greater extent.

This approximation is valid when the magnetic force

Fm = − 1

4π
B × rot B (7.16)



7.1. Main Approximations in Ideal MHD 183

dominates all the others (inertia force, pressure gradi-
ent, etc.).

In Equation (7.7), the magnetic field is a strong one if

ε2 � 1 and γ2 � 1 , (7.17)

i.e. the magnetic energy density greatly exceeds that of the

kinetic and thermal energies:

B 2
0

8π
� ρ0v

2

2
and

B 2
0

8π
� 2n0kB

T0 .

From Equation (7.7) it follows that, in the zeroth order

with respect to the small parameters (7.17), the magnetic
field is force-free:

B × rot B = 0 . (7.18)

This conclusion is quite natural:

if the magnetic force dominates all the others, the

magnetic field must balance itself in the region un-
der consideration.

Condition (7.18) means that electric currents flow parallel

to magnetic field lines.

If, in addition, electric currents are absent in some re-
gion, then the strong field is simply potential:

rot B = 0 , B = ∇Ψ , ∆Ψ = 0 . (7.19)
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Let us consider the first order in the small parame-
ters (7.17).

If they are not equally significant, there are two possi-
bilities.

(a) We suppose, at first, that

ε2 � γ2 � 1 . (7.20)

Then we neglect the inertia force in Equation (7.7) as com-
pared to the pressure gradient.

Decomposing the magnetic force into a magnetic ten-
sion force and a magnetic pressure gradient,

Fm = − 1

4π
B × rot B =

1

4π
(B · ∇)B −∇ B2

8π
, (7.21)

we obtain the following dimensionless equation:

(B · ∇)B = ∇

B2

2
+ γ2p


 . (7.22)

Owing to the gas pressure gradient, the magnetic field
differs from the force-free one:

the magnetic tension force (B · ∇)B/4π must bal-
ance not only the magnetic pressure gradient but

that of the gas pressure as well.

Obviously the effect is proportional to the small parame-

ter γ2.
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This approximation is naturally called the magneto-
statics since v = 0.

It works in regions of a strong magnetic field where the

gas pressure gradients are large, e.g., in coronal loops and
reconnecting current layers in the solar corona.

(b) The inertia force also causes the magnetic field to
deviate from the force-free one:

ε2
{
1

δ

∂v

∂t
+ (v · ∇)v

}
= − 1

ρ
B × rot B . (7.23)

Here we ignored the pressure gradient as compared with

the inertia force.

This is the case

γ2 � ε2 � 1 . (7.24)

The approximation corresponding (7.24) is termed the ap-

proximation of strong field and cold plasma.

The main applications of this approximation are the so-
lar atmosphere and the Earth’s magnetosphere.

Both objects are well studied from the observational

viewpoint.

So we can proceed with confidence from qualitative in-
terpretation to the construction of quantitative mod-

els.

The presence of a strong field and a rarefied plasma is

common for both phenomena.
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A sufficiently strong magnetic field easily moves
a comparatively rarefied plasma in many non-

stationary phenomena in space.

Some astrophysical applications will be discussed in the
following two Sections.

∗ ∗ ∗

In closing, let us consider the dimensionless parameter

δ = vτ/L .

It characterizes the relative role of

the local ∂/∂t

and transport (v · ∇)

terms in the substantial derivative

d

dt
=

1

δ

∂

∂t
+ (v · ∇) .

If δ � 1, the flow can be considered to be stationary

ε2 (v · ∇)v = − 1

ρ
B × rot B . (7.25)

If δ � 1, the transport term (v · ∇) can be ignored, and
the equation of motion takes the form

ε2 ∂v

∂t
= − 1

ρ
B × rot B , (7.26)

other equations becoming linear.
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This case corresponds to small small perturbations.

If need be, the right-hand side of Equation (7.26) can be
linearized too.

Generally the parameter

δ ≈ 1 ,

and the MHD equations in the approximation of strong

field and cold plasma take the following dimensionless form:

ε2 dv

dt
= − 1

ρ
B × rot B , (7.27)

∂B

∂t
= rot (v ×B ) , (7.28)

∂ρ

∂t
+ div ρv = 0 . (7.29)

In the next Chapter we shall consider some continuous
flows, which are described by these equations.

7.2 Accretion disks of stars

7.2.1 Angular momentum transfer

Magnetic fields are discussed as a means of angular trans-
port in the accretion disk.

Interest in the magnetic fields in binary stars steadily

increased after the discovery of the nature of AM Herculis.
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The optical counterpart of the soft X-ray source has po-
larization in the V and I spectral bands.

This suggested the presence of a strong field, B ∼ 108 G,

assuming the fundamental cyclotron frequency to be ob-
served.

Other similar systems were soon discovered.

Evidence for strong fields was found in the X-ray bi-

nary pulsars and the intermediate polar binaries.

MHD in binary stars is now an area of central impor-

tance in stellar astrophysics (Campbell, 1997).

D
L1

SS

L2

Figure 7.1: A binary system with an accretion disk. The
tidally and rotationally distorted secondary star SS loses
plasma from the unstable L1 point. The resulting plasma

stream feeds an accretion disk D, centered on the primary
star.

The disk is fed by the plasma stream originated in the L1

region (Fig. 7.1) of the secondary star.
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In a steady state,

plasma is transported through the disk at the rate
it is supplied by the stream and the angular mo-

mentum is advected outwards.

Such advection requires coupling between rings of rotating
plasma; the ordinary viscosity is too weak to provide

this.

Hence some form of anomalous viscosity must be in-
voked.

Purely hydrodynamic turbulence does not produce
sustained outward transport of angular momentum.

MHD turbulence greatly enhances angular momen-
tum transport (Balbus and Papaloizou, 1999).

Turbulent viscous and magnetic stresses cause
radial advection of the angular momentum via the
azimuthal forces.

7.2.2 Accretion in cataclysmic variables

Cataclysmic variables (CVs) are binary systems composed

of a white dwarf (primary star) and a late-type, main-
sequence companion (secondary star).

The way this plasma falls towards the primary depends

on the intensity of a magnetic field of the white dwarf.

The strong field (B >∼ 107 G) may entirely dominate the

accretion flow.
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The magnetic field is strong enough to synchronize the
white dwarf rotation (spin) with the orbital period.

No disk is formed.

Instead, the field channels accretion towards its polar
regions.

Such synchronous systems are known as AM Herculis
binaries or polars.

The intermediate (B ∼ 2 − 8 × 106 G) field primary

stars harbor magnetically truncated accretion disks which
extend until magnetic pressure begins to dominate.

Presumably the plasma is finally accreted onto the mag-
netic poles of the white dwarf.

The asynchronous systems are known as DQ Herculis
binaries or intermediate polars (IPs).

The accretion geometry strongly influences the emission
properties at all wavelengths and its variability.

The knowledge of the behavior in all energy domains can
allow one to locate the different accreting regions.

The white dwarf LHS 2534 offers the first empirical data
of the Zeeman effect on neutral Na, Mg, and both ionized

and neutral Ca.

The Na I splitting results in a field strength estimate of

1.92 × 106 G.
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7.2.3 Accretion disks near black holes

In the binary stars discussed above, there is an abundance
of evidence for accretion disks:

(a) double-peaked emission lines,

(b) eclipses of an extended light source centered on the

primary,

(c) eclipses of the secondary star by the disk.

The case of accretion disks in active galactic nuclei (AGN)
is less clear.

Nonetheless the disk accretion onto a super-massive
black hole is the commonly accepted model for these ob-

jects.

As the plasma accretes in the gravitational field of the

central mass, magnetic field lines are convected inwards,
amplified and finally deposited on the horizon of the

black hole.

As long as a magnetic field is confined by the disk, a

differential rotation causes the field to wrap up tightly,
becoming highly sheared and predominantly azimuthal in

orientation.

A dynamo in the disk may be responsible for the main-

tenance and amplification of the magnetic field.

In the standard model of an accretion disk (Shakura
and Sunyaev, 1973; Novikov and Thorne, 1973), the gravi-

tational energy is locally radiated from the optically thin
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disk.

However the expected power far exceeds the ob-

served luminosity.

There are two possible explanations:

(a) the accretion occurs at extremely low rates, or

(b) the accretion occurs at low radiative efficiency.

Advection results in a structure different from the stan-

dard model.

The advection process physically means that

the energy generated via viscous dissipation is re-

stored as entropy of the accreting plasma flow
rather than being radiated.

An optically thin advection-dominated accretion flow

(ADAF) seemed to be a model that can reproduce the
observed spectra of black hole systems such as AGN and

Galactic black hole candidates.

7.2.4 Flares in accretion disk coronae

Following the launch of several X-ray satellites, astrophysi-
cists have tried to observe and analyze the variations of

high energy flux from black hole candidates.

It has appeared that

there are many relationships between flares in the
solar corona and ‘X-ray shots’ in accretion disks.
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For example, the peak interval distribution of Cyg X-1
shows that the occurrence frequency of large X-ray shots

is reduced.

A second large shot does not occur soon after a previous
large shot.

This suggests the existence of energy-accumulation
structures, such as non-potential magnetic fields in the

solar corona.

It is likely that accretion disks have a corona.

Galeev et al. (1979) suggested that the corona is confined

in strong magnetic loops which have buoyantly emerged
from the disk.

Magnetic reconnection of buoyant fields in the

lower density surface regions may supply the energy
source for a hot corona.

The existence of a disk corona with a strong field raises

the possibility of a wind flow similar to the solar wind.

This would result in angular momentum transport
away from the disk, which could have some influence on the

inflow.

Another feature is the possibility of a flare energy re-
lease similar to solar flares.

When a plasma in the disk corona is optically thin and
has a dominant magnetic pressure, the circumstances

are similar to the solar corona.
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Therefore

it is possible to imagine some similarity between

the mechanisms of solar flares and X-ray shots in
accretion disk coronae.

Besides the effect of heating the the disk corona, recon-
nection is able to accelerate particles to high energies.

Some geometrical and physical properties of the flares
in disk coronae can be inferred from X-ray observations of

Galactic black hole candidates.

7.3 Astrophysical jets

7.3.1 Jets near black holes

Jet-like phenomena, including relativistic jets, are observed
on a wide range of scales in accretion disk systems.

AGN show extremely energetic outflows extending
beyond the outer edge of a galaxy in the form of strongly

collimated jets.

There is evidence that magnetic forces are involved

in the driving mechanism and that the magnetic fields
also provide the collimation of relativistic flows.

Rotating black holes are thought to be the prime-
mover in centers of galaxies.

The gravitational field of rotating black holes is more

complex than that of non-rotating ones.
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The weak-gravity (far from the hole) low-velocity coor-
dinate acceleration of uncharged particle

d2r

dt2
= g +

dr

dt
× H gr . (7.30)

This looks like the Lorentz force with the electric field E

replaced by g, the magnetic field B replaced by the vector

H gr = rot A gr ,

and the electric charge e replaced by the particle mass m.

These analogies lie behind the words “gravitoelectric”
and “gravitomagnetic” to describe the gravitational ac-

celeration field g and to describe the “shift function” Agr

(Exercise 7.6).

Thus, far from the horizon, the gravitational acceleration

g = −M
r2 er (7.31)

is the radial Newtonian acceleration, and

the gravitomagnetic field

Hgr = 2
J − 3 (J · er) er

r3 (7.32)

is a dipole field.

The role of dipole moment is played by the hole’s angular
momentum

J =
∫

( r× ρmv) dV .
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The gravitomagnetic force drives an accretion disk

into the hole’s equatorial plane and holds it there

(Fig. 7.2).

H

J

gr

D

jet

V

Figure 7.2: An accretion disk D around a rotating black hole
is driven into the hole’s equatorial plane at small radii by

a combination of gravitomagnetic forces (action of the
gravitomagnetic field Hgr on orbiting plasma) and viscous
forces.

At radii where the bulk of the disk’s gravitational energy

is released and where the hole-disk interactions are strong,

there is only one geometrically preferred di-
rection along which a jet might emerge, which co-

incides with the rotation axis of the black hole.
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The jet might be produced by winds off the disk, in
other cases by electrodynamic acceleration of the disk, and

in others by currents in the hole’s magnetosphere.

However whatever the mechanism, the jet presumably is
locked to the hole’s rotation axis.

The black hole acts as a gyroscope to keep the
jet aligned.

It is very difficult to torque a black hole.

The fact accounts for the constancy of the observed jet
directions over length scales as great as millions of light

years and thus over time scales of millions of years or
longer.

∗ ∗ ∗

In the highly-conducting medium, the gravitomagne-
tic force couples with electromagnetic fields over Maxwell’s
equations.

This effect has interesting consequences for the magnetic
fields advected towards the black hole.

It leads to a gravitomagnetic dynamo which amplifies

any seed field near a rotating compact object.

This process builds up the dipolar magnetic struc-
tures which may be behind the bipolar outflows seen as

relativistic jets.
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7.3.2 Relativistic jets from disk coronae

Relativistic jets are produced perpendicular to the accretion

disk plane (Fig. 7.2) around a super-massive black hole in
an AGN.

The shock of the jets on intergalactic media is consid-

ered as being able to accelerate particles up to the highest
energies, say 1020 eV for cosmic rays.

This hypothesis need, however, to be completed by some

necessary ingradients since such powerful galaxies are
rare objects.

The relativistic jets may be powered by acceleration of
protons in a corona above an accretion disk.

The acceleration arises as a consequence of the shearing

motion of the magnetic field lines in the corona, that are
anchored in the underlying Keplerian disk.

Particle acceleration in the corona leads to the develop-

ment of a pressure-driven wind.

It passes through a critical point and subsequently trans-
forms into a relativistic jet at large distances from the

black hole.

7.4 Practice: Exercises and Answers

Exercise 7.1. Evaluate the Alfvén speed in the solar
corona above a large sunspot.

Answer.
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From definition we find

V
A
≈ 2.18 × 1011 B√

n
, cm s−1 . (7.33)

Above a sunspot B ≈ 3000 G, n ≈ 2 × 108 cm−3 .

Thus (7.33) gives unacceptably high values:

V
A
≈ 5 × 1010 cm s−1 > c .

This means that

in a strong magnetic field and low density plasma,
the Alfvén waves propagate with velocities ap-

proaching the light speed c .

So the non-relativistic formula (7.33) has to be corrected
by a relativistic factor:

V rel
A

=
B√
4πρ

1√
1 + B2/4πρc2

, (7.34)

which agrees with (7.14) if B2 � 4πρc2.

Therefore the relativistic Alfvén wave speed is always smaller
than the light speed.

For values of the magnetic field and plasma density men-

tioned above,

V rel
A

≈ 2 × 1010 cm s−1.

Exercise 7.2. Discuss properties of the Lorentz force in

terms of the Maxwellian stress tensor (6.11).
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Exercise 7.3. Show that the magnetic tension force
is directed to the local centre of curvature.

Exercise 7.4. For the conditions in the corona, used in
Exercise 7.1, estimate the parameter γ2.

Answer.

Substitute p0 = 2n0kB
T0 in definition (7.13):

For the temperature T0 ≈ 2 × 106 K and magnetic field
B0 ≈ 3000 G

γ2 ∼ 10−7 .

Exercise 7.5. By using formula (6.63) for the energy
flux in ideal MHD, find the magnetic energy influx into

a reconnecting current layer.

Answer.

In this simplest approximation, near the layer, the mag-

netic field B ⊥ v.

In formula (6.63) the product B · v = 0 and the energy
flux density

G = ρv


v2

2
+ w


+

B2

4π
v . (7.35)

If the approximation of a strong field is satisfied, the last
term in (7.35) is dominating, and we find the Poynting vec-

tor directed into the current layer
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G
P

=
B2

4π
v . (7.36)

Exercise 7.6. Consider a weakly gravitating, slowly ro-

tating body such as the Sun, with all nonlinear gravitational
effects neglected.

Compute the gravitational force and gravitomagnetic

force from the linearized Einstein equations (see Landau
and Lifshitz, Classical Theory of Field).

Show that, for a time-independent body, these equations

are identical to the Maxwell equations:

rotg = 0 , div g = − 4πGρm , (7.37)

rot Hgr = − 16πGρmv , div Hgr = 0 . (7.38)

Here the differences are:

(a) two minus signs because gravity is attractive rather

than repulsive,

(b) the factor 4 in the rot Hgr equation,

(c) the presence of the gravitational constant G,

(d) the replacement of charge density ρ q by mass den-
sity ρm, and

(e) the replacement of electric current j by the mass

flow ρmv.
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Chapter 8

Plasma Flows in a Strong
Magnetic Field

A strong magnetic field easily moves a rarified
plasma in many non-stationary phenomena in the

astrophysical environment.

The best studied example is the solar flares

which strongly influence the interplanetary and
terrestrial space.

8.1 The general formulation of a problem

As was shown above, the set of MHD equations for an
ideal medium in the approximation of strong field and

cold plasma is characterized only by the small parame-
ter ε2 = v2/V 2

A
:

ε2 dv

dt
= − 1

ρ
B × rot B , (8.1)

203
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∂B

∂t
= rot (v × B) , (8.2)

∂ρ

∂t
+ div ρv = 0 . (8.3)

Let us represent all the unknown quantities in the form

f(r, t) = f (0)(r, t) + ε2f (1)(r, t) + . . . .

Then we try to find the solution in three consequent
steps.

(a) To zeroth order with respect to ε2, the magnetic field
is determined by the equation

B (0) × rot B (0) = 0 . (8.4)

This must be supplemented with a boundary condition,

which generally depends on time:

B (0) (r, t) |S = f 1 (r, t) . (8.5)

Here S is the boundary of the region G (Fig. 8.1), in which
the force-free-field Equation (8.4) applies.

The strong force-free field, changing in time accord-

ing to the boundary condition (8.5), sets the plasma
in motion.

(b) Kinematics of this motion is uniquely determined

by two conditions.
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x

z
v

v

||

⊥

B

G

S

y

Figure 8.1: The boundary and initial conditions for the ideal
MHD problems.

The first one signifies the orthogonality of acceleration
to the magnetic field lines

B (0) · dv
(0)

dt
= 0 . (8.6)

This equation is the scalar product of Equation (8.1) and
the vector B(0).

The second condition is a consequence of the freezing-
in Equation (8.2)

∂B (0)

∂t
= rot

(
v(0) × B (0)

)
. (8.7)

Equations (8.6) and (8.7) determine the velocity v(0)(r, t),
if the initial condition inside the region G is given:

v
(0)
‖ (r, 0) |G = f 2 (r) . (8.8)



206 Chapter 8. Flows in Strong Field

Here v
(0)
‖ is the velocity component along the field lines.

The velocity component across the field lines, v
(0)
⊥ , is

uniquely defined by the freezing-in Equation (8.7) at any

moment, including the initial one.

Therefore we do not need the initial condition for v
(0)
⊥ .

(c) Since we know the velocity field v(0)(r, t), the conti-
nuity equation

∂ρ (0)

∂t
+ div ρ (0)v(0) = 0 (8.9)

allows us to find the plasma density ρ (0)(r, t), if we know
its initial distribution

ρ (0)(r, 0) |G = f3 (r) . (8.10)

Therefore,

at any moment of time,

the field B (0) (r, t) is found from Equation (8.4) and the

boundary condition (8.5).

Thereupon the velocity v(0)(r, t) is determined from Equa-
tions (8.6) and (8.7) and the initial condition (8.8).

Finally the continuity Equation (8.9) and the initial con-

dition (8.10) give the plasma density ρ (0) (r, t).

We restrict our attention to the zeroth order relative
to the parameter ε2, neglecting the field deviation from a

force-free state.
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The question of the existence of solutions will be con-
sidered later on, using 2D problems.

8.2 The formalism of 2D problems

Being relatively simple from the mathematical viewpoint,
2D ideal MHD problems allow us to gain some general

knowledge concerning the actual flows of plasma with the
frozen-in strong magnetic field.

The 2D problems are sometimes a close approximation

of the real 3D flows and can be used to compare the theory
with experiments and observations.

There are two types of problems treating the plane
flows of plasma, i.e. the flows with the velocity field

v = { vx(x, y, t), vy(x, y, t), 0 } .

All the quantities are dependent on variables x, y and t.

8.2.1 The first type of problems

The first type incorporates the problems with a magnetic

field which is everywhere parallel to the z axis:

B = { 0, 0, B (x, y, t) } .

The corresponding current is parallel to the (x, y) plane:

j = { jx(x, y, t), jy(x, y, t), 0 } .
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As an example, let us discuss the effect of a longitudinal
magnetic field in a reconnecting current layer (RCL).

Under real conditions, reconnection does occur not at
the zeroth lines but rather at the separators.

The latter differ from the zeroth lines only in that the

separators contain the longitudinal field (Fig. 8.2).

B

B ||

y

x

Figure 8.2: A longitudinal

field B ‖ parallel to the
z axis is superimposed on
the 2D hyperbolic field in

the plane (x, y).

With appearance of the longitudinal field, the force bal-
ance in the RCL is changed.

The field and plasma pressure outside the RCL must
balance not only the gas pressure but also that of the lon-

gitudinal field inside the RCL (Fig. 8.3)

B ‖ =
{
0, 0, B ‖ (x, y, t)

}
.

If the longitudinal field accumulated in the RCL during
reconnection, the field pressure B 2

‖/8π would considerably

limit the layer compression and the reconnection rate.
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B

j

j x

y x

y

B | |

B | |

Figure 8.3: A model of a RCL with a longitudinal compo-
nent B ‖ of magnetic field.

However the solution of the problem of the first type

with respect to B ‖ shows that another effect is of impor-
tance in the real plasma with finite conductivity.

The longitudinal field compression in the RCL pro-

duces a gradient of this field and a corresponding current
circulating in the transversal plane (x, y).

This current is represented schematically in Fig. 8.3.

Dissipation of the circulating current leads to lon-
gitudinal field diffusion outwards from the RCL.

More exactly, because of dissipation, plasma moves
into the RCL relatively free with respect to the longitudinal
component of magnetic field, thus limiting its accumulation

in the RCL.



210 Chapter 8. Flows in Strong Field

8.2.2 The second type of MHD problems

8.2.2 (a) Magnetic field and its vector potential

The 2D problems of the second type treat the plane flows

v = { vx(x, y, t), vy(x, y, t), 0 } ,

associated with the plane magnetic field

B = {Bx(x, y, t), By(x, y, t), 0 } .

The currents corresponding to this field are parallel to the
z axis

j = { 0, 0, j (x, y, t) } .

The vector-potential A has an its only non-zero compo-

nent:

A = { 0, 0, A (x, y, t) } .

The magnetic field B is defined as

B =

{
∂A

∂y
, − ∂A

∂x
, 0

}
. (8.11)

The scalar function A (x, y, t) is often termed the vector
potential.

This function is quite useful, owing to its properties.

Property 1.
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Substitute (8.11) in the differential equations describing
the magnetic field lines

dx

Bx
=
dy

By
=
dz

Bz
.

These equations imply parallelism of the vector

d l = {dx, dy, dz}
to the vector B = {Bx, By, Bz}.

In the case under study

Bz = 0, dz = 0 ,

and

dx

∂A/∂y
= − dy

∂A/∂x

or

∂A

∂x
dx+

∂A

∂y
dy = 0 .

On integrating the last, we come to the relation

A (x, y, t) = const for t = const .
(8.12)

This is the equation for a family of magnetic field lines

in the plane z = const at the moment t.

Property 2.
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2

1 BL

d l

d S
Figure 8.4: The curve L con-
nects the points 1 and 2 sit-

uated in different field lines.

Let L be a curve in the plane (x, y) and d l an arc element

along this curve (Fig. 8.4).

Let us calculate the magnetic flux dΦ through the arc
element d l.

By definition,

dΦ = B · dS = B · (ez × d l ) = B ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

0 0 1

dx dy 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= B · { (−dy) ex + dx ey } =

= −Bx dy +By dx . (8.13)

On substituting (8.11) in (8.13) we find

dΦ = −∂A
∂y

dy − ∂A

∂x
dx = − dA .

On integrating this along the curve L from point 1 to point 2

we obtain the magnetic flux

Φ = A2 − A1 .
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Thus the fixed value of the potential A is not only the field
line ‘tag’ determined by formula (8.12);

the difference of values of the vector potential A

on two field lines is equal to the magnetic flux
between them.

Simple rule:

Plot the field lines corresponding to equidistant values

of A.

Property 3.

Let us substitute definition (8.11) in the freezing-in equa-

tion.

We obtain the following equation

rot
dA

dt
= 0 .

Disregarding a gradient of an arbitrary function and con-
sidering the second type of 2D problems, we have

dA

dt
≡ ∂A

∂t
+ (v · ∇)A = 0 . (8.14)

This equation means that the lines

A (x, y, t) = const (8.15)

are Lagrangian lines: they move together with plasma.

According to (8.12) they are composed of the field lines.
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Hence Equation (8.14) expresses the magnetic field freez-
ing in plasma.

Thus we have one of the integrals of motion

A (x, y, t) = A (x0, y0, 0) ≡ A0
(8.16)

at an arbitrary t.

Here

x0, y0 are the coordinates of a “fluid particle” at the

initial time t = 0;

x, y are the coordinates of the same particle at a moment

of time t or the coordinates of any other particle situated
on the same field line A0 at the moment t.

Property 4.

Equation of motion (8.1) rewritten in terms of the vector
potential A(x, y, t) is of the form

ε2 dv

dt
= −1

ρ
∆A∇A . (8.17)

In the zeroth order relative to the small parameter ε2,
outside the zeroth points (where ∇A = 0) and the mag-
netic field sources (where ∆A �= 0) we have:

∆A = 0 .
(8.18)
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So the vector potential is a harmonic function of variables
x and y.

Hence, considering the (x, y) plane as a complex plane

z = x+ i y ,

it is convenient to relate an analytic function F to the

vector potential A:

F (z, t) = A (x, y, t) + iA+(x, y, t) . (8.19)

Here A+(x, y, t) is a conjugate harmonic function con-
nected with A (x, y, t) by the Cauchy-Riemann condition

A+(x, y, t) =
∫ (

− ∂A

∂y
dx+

∂A

∂x
dy

)
+A+(t) =

= −
∫

B · d l + A+(t) ,

where A+(t) is a quantity independent of the coordinates x
and y.

The function F (z, t) is termed the complex potential.

The magnetic field vector

B = Bx + iBy = − i

(
dF

dz

)∗
, (8.20)

the asterisk denoting the complex conjugation.

Now we can apply the methods of the complex vari-
able function theory, in particular the method of conform

mapping .
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This has been done in order to determine the structure
of magnetic field:

• in vicinity of reconnecting current layer (Syrovat-
skii, 1971),

• in solar coronal streamers (Somov and Syrovatskii,
1972)

• in the Earth’s magnetosphere (Oberz, 1973),

• the accretion disk magnetosphere (Somov et al., 2003).

Markovskii and Somov (1989) generalized the Syrovatskii
model by attaching four shock MHD waves at the edges

of the RCL.

The model reduces to the Riemann-Hilbert problem (in
an analytical form on the basis of the Christoffel-Schwarz

integral) in order to analyze the structure of magnetic field
in vicinity of reconnection region (Bezrodnykh et al., 2007).

8.2.2 (b) Motion of the plasma and its density

The motion kinematics due to changes in a potential field

is uniquely determined by two conditions:

(i) the freezing-in condition and

(ii) the acceleration orthogonality with respect to the
field lines

dv(0)

dt
×∇A(0) = 0 . (8.21)
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Equation (8.21) is a result of eliminating the unknown ∆A(1)

from two components of the vector equation

dv(0)

dt
= − 1

ρ (0) ∆A(1) ∇A(0) . (8.22)

If x(t) and y(t) are the coordinates of a fluid particle,

Equations (8.21) and (8.14) are reduced to the ordinary
differential equations (Somov and Syrovatskii, 1976).

Once the kinematic part of the problem is solved, the
trajectories of fluid particles are known:

x = x (x0 , y0 , t) , y = y (x0 , y0 , t) . (8.23)

The fluid particle density change on moving along its
trajectory is determined by the continuity Equation (8.3),

rewritten in the Lagrangian form, and is equal to

ρ (x, y, t)

ρ0 (x0, y0)
=
dU0

dU
=

D (x0, y0)

D (x, y)
. (8.24)

Here dU0 is the initial volume of a particle, dU is the vol-

ume of the same particle at a moment of time t;

D (x0, y0)

D (x, y)
=
∂x0

∂x

∂y0

∂y
− ∂x0

∂y

∂y0

∂x
(8.25)

is the Jacobian of the transformation that is inverse to the

transformation (8.23).
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The 2D equations of the strong-field-cold-plasma approx-
imation are relatively simple but useful for applications

to astrophysical plasmas.

In particular, they enable us to study the fast plasma

flows in the solar atmosphere and to understand some as-
pects of the reconnection process.

In spite of their numerous applications, the list of
exact solutions to them is rather poor. Still, we

can enrich it significantly,

relying on many astrophysical objects, for example in the
accretion disk coronae and some mathematical ideas.

8.3 The existence of continuous flows

Thus, in the strong-field-cold-plasma approximation, the
MHD equations for a plane 2D flow of ideally conducting

plasma (for the second-type problems) are reduced, in the
zeroth order in the small parameter ε2, to the following

closed set of equations:

∆A = 0 , (8.26)

dv

dt
×∇A = 0 , (8.27)

dA

dt
= 0 , (8.28)
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∂ρ

∂t
+ div ρv = 0 . (8.29)

x

y

v
v

||

⊥

B

G

S

Figure 8.5: The boundary and initial conditions for a second-
type 2D problem.

The solution of this set is completely defined inside some

region G (Fig. 8.5) once the boundary condition is given
at the boundary S

A (x, y, t) |S = f1 (x, y, t) (8.30)

together with the initial conditions inside the region G

v‖ (x, y, 0) |G = f2 (x, y) , (8.31)

ρ (x, y, 0) |G = f3 (x, y) . (8.32)

Here v ‖ is the velocity component along field lines.
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Once the potential A (x, y, t) is known, the transversal
velocity component is uniquely determined by the freezing-

in Equation (8.28) and is equal, at any moment including
the initial one, to

v⊥(x, y, t) = (v · ∇A)
∇A

|∇A |2 = −∂A
∂t

∇A
|∇A |2 . (8.33)

The density ρ (x, y, t) is found from the continuity Equa-

tion (8.29) and the initial density distribution (8.32).

The next Section is devoted to an example which may
have applications.

8.4 Flows in a time-dependent dipole field

8.4.1 Plane magnetic dipole fields

Two parallel currents, equal in magnitude but opposite in
direction, engender the magnetic field which far from the

currents can be described by a complex potential

F (z) =
im

z
, m = me iψ (8.34)

and is called the plane dipole field.

The quantity

m =
2

c
I l

has the meaning of the dipole moment,
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I is the current magnitude,

l is the distance between the currents.

Formula (8.34) corresponds to the dipole situated at the

origin of coordinates in the plane (x, y) and directed at an
angle of ψ to the x axis.

Let us consider the plasma flow caused by the change

with time of the strong magnetic field of the dipole

ψ = π/2 and
m = m(t) , m(0) = m0 .

(a) Let us find the first integral of motion.

According to(8.34), the complex potential

F (z, t) =
−m(t) x+ im(t) y

x2 + y2 . (8.35)

So, the field lines constitute a family of circles

A (x, y, t) = − m(t) x

x2 + y2 = const for t = const .

They have centres on the axis x and the common point
x = 0, y = 0 in Fig. 8.6.

Therefore the freezing-in condition (8.16) results in a

first integral of motion

mx

x2 + y2 =
m0 x0

x 2
0 + y 2

0
. (8.36)

Here x0, y0 are the coordinates of a fluid particle at the

initial time t = 0 .
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m

x

y

Figure 8.6: The field lines of a plane magnetic dipole.

(b) The second integral is easily found in the limit of
small changes of the dipole moment m (t) and respectively

small plasma displacements.

Assuming the parameter

δ = vτ/L

to be small, Equation (7.26):

ε2 ∂v

∂t
= − 1

ρ
B × rot B ,

which is linear in velocity.

The integration over time (with zero initial values for

the velocity) allows us to reduce Equation (7.26) to the
form

∂x

∂t
= K(x, y, t)

∂A

∂x
,

∂y

∂t
= K(x, y, t)

∂A

∂y
. (8.37)
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Here K(x, y, t) is some function of coordinates and time.

Eliminating it from two Equations (8.37), we arrive at

∂y

∂x
=
∂A

∂y

/∂A
∂x

. (8.38)

Thus, not only the acceleration but also the plasma dis-
placements are normal to the field lines.

For dipole field, we obtain an ordinary differential equa-

tion

dy

dx
=

2xy

x2 − y2 .

Its integral

y

x2 + y2 = const

describes a family of circles, orthogonal to the field
lines, and presents fluid particle trajectories.

In particular, the trajectory of a particle, situated at a

point (x0, y0) at the initial time t = 0, is an arc of the
circle

y

x2 + y2 =
y0

x 2
0 + y 2

0
(8.39)

from the point (x0, y0) to the point (x, y) on the field line

(8.36) (Fig. 8.7).

The integrals of motion (8.36) and (8.39) completely de-
termine the plasma flow in terms of the Lagrangian coordi-

nates
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Figure 8.7: A trajectory of
a fluid particle driven by
a changing magnetic field

of a plane dipole. m

x

y

y

yx,

x
0

0

t = 0

0

x = x (x0, y0, t) , y = y (x0, y0, t) . (8.40)

This flow has a simple form:

the particles are connected with the magnetic field lines

and move together with them in a transversal direction.

This is a result of considering small displacements under
the action of the force perpendicular to the field lines.

(c) The plasma density change.

On calculating the Jacobian for the transformation given

by (8.36) and (8.39), we obtain the formula

ρ (x, y, t)

ρ0
=

(
m

m0

)
m 4

0

(m2x2 +m 2
0 y

2)4

{[
m2x4 +m 2

0 y
4+

+x2y2
(
3m2 −m 2

0

) ]2 − [
2x2y2

(
m 2

0 −m2
)]2}

. (8.41)

On the dipole axis (x = 0)
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ρ (0, y, t)

ρ0
=

m

m0
,

(8.42)

whereas in the ‘equatorial plane’ (y = 0)

ρ (x, 0, t)

ρ0
=

(
m0

m

)3
. (8.43)

With increasing dipole moment m, the plasma den-
sity on the dipole axis grows proportionally to the

moment,

whereas that at the equatorial plane falls in inverse pro-
portion to the third power of the moment.

The result pertains to the small changes in the dipole

moment.

The exception is formula (8.42).

It applies to any changes of the dipole moment.

The acceleration of plasma is perpendicular to the field

lines and is zero at the dipole axis.

Hence, if the plasma is motionless at the initial moment,
arbitrary changes of the dipole moment do not cause a

plasma motion on the dipole axis (v = 0).

Plasma displacements in the vicinity of the dipole axis
always remain small (δ � 1) and the solution obtained

applies.
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(d) In the general case of arbitrarily large dipole moment
changes,

the inertial effects resulting in plasma flows along

the field lines are of considerable importance

(Somov and Syrovatskii, 1972).

The solution of the problem requires the integration of
the ordinary differential equations that follows from

Equation (8.21) and the freezing-in Equation (8.14).

8.4.2 Axial-symmetric dipole fields

2D axial-symmetric problems can better suit the astrophys-
ical applications of the second-type problem considered.

The ideal MHD equations are written, using the ap-

proximation of a strong field and cold plasma, in spherical
coordinates with due regard for axial symmetry.

The role of the vector potential is fulfilled by the so-called

stream function

Φ (r, θ, t) = r sin θ Aϕ(r, θ, t) . (8.44)

Here Aϕ is the only non-zero ϕ-component of the vector-

potential A.

In terms of the stream functions, the equations take the
form

dv

dt
= ε−2K(r, θ, t)∇Φ ,

dΦ

dt
= 0 ,

dρ

dt
= −ρ div v ,
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where

K(r, θ, t) =
jϕ(r, θ, t)

ρ r sin θ
(8.45)

(Somov and Syrovatskii, 1976).

The equations formally coincide with the corresponding

Equations (8.17), (8.14) and (8.3) describing the plane flows
in terms of the vector potential.

As a zeroth approximation in the small parameter ε2, we

may take, for example, the dipole field.

In this case the stream function is of the form

Φ(0) (r, θ, t) = m(t)
sin2 θ

r
, (8.46)

where m(t) is a time-varying moment.

Let us imagine a magnetized ball of radius R(t) with
the frozen field B int(t).

The dipole moment of such a ball (a star or its envelope)

m(t) =
1

2
B int(t)R

3(t) =
1

2π

(
B0 πR

2
0

)
R(t) . (8.47)

Here B0 and R0 are the values of B int(t) and R(t) at the

initial time t = 0.

The second equality takes account of conservation of the
flux

Bint(t) πR
2(t)

through the ball.
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Formula (8.47) shows that the dipole moment of the ball
is proportional to its radius R(t).

The solution to the problem (Somov and Syrovatskii,
1972a) shows that as the dipole moment grows

the magnetic field rakes the plasma up to the
dipole axis, compresses it and simultaneously ac-

celerates it along the field lines.

The density at the axis grows in proportion to the
dipole moment, just as in the 2D plane case.

∗ ∗ ∗

Envelopes of nova and supernova stars present a wide
variety of different shapes.

It is common to find either flattened or stretched en-
velopes.

Their surface brightness is maximal at the ends of the
main axes of an oval image.

This can sometimes be interpreted as a gaseous ring
observed almost from an edge.

However, if there is no luminous belt between the bright-
ness maxima, then the remaining possibility is that single

gaseous compressions – condensations – exist in the en-
velope.

At the early stages of the expansion, they give the im-

pression that the nova ‘bifurcates’.
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Suppose that the star’s magnetic field was a dipole one
before the explosion.

At the moment of the explosion a massive envelope

with the frozen-in field separated from the star and began
to expand.

The expansion results in the growth of the dipole mo-

ment.

The field rakes the interstellar plasma surrounding the

envelope, as well as external layers of the envelope, up in
the direction of the dipole axis.

The process can be divided into two stages.

At the first one, the plasma is raked up by the field into

the polar regions, a growth in density and pressure at the
dipole axis taking place.

At the second stage, the increased pressure hinders the
growth of the density, thus stopping compression, but the

raking-up still continues.

The gas pressure gradient, arising ahead of the enve-
lope, gives rise to the motion along the axis.

As a result, all the plasma is raked up into two compact
condensates.

∗ ∗ ∗

If a magnetized ball compresses, plasma flows from the
poles to the equatorial plane, thus forming a dense disk

or ring.
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This is the old problem of astrophysics concerning the
compression of a gravitating cloud with a frozen-in field.

Magnetic raking-up of plasma into dense disks can work

in the atmospheres of collapsing stars.

8.5 Practice

Exercise 8.1. For a 3D field B, consider properties of

the vector-potential A which is determined in terms of two
scalar functions α and β:

A = α∇β + ∇ψ . (8.48)

Here ψ is an arbitrary scalar function.

Answer.

Formula (8.48) permits B to be written as

B = ∇α×∇β . (8.49)

Hence
B · ∇α = 0 and B · ∇β = 0 . (8.50)

Thus ∇α and ∇β are perpendicular to the vector B, and

functions α and β are constant along B.

The surfaces α = const and β = const are orthogonal to
their gradients and tangent to B.

Hence

a magnetic field line can be conveniently defined
in terms of a pair of values: α and β.
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The functions α and β are referred to as Euler potentials
or Clebsch variables.

Advantage of these variables appears in the study of field
line motions.

Exercise 8.2. Evaluate the typical value of the dipole
moment for a neutron star.

Answer.

Typical neutron stars have B ∼ 1012 G.

With the star radius R ∼ 10 km, it follows from for-
mula (8.47) that

m ∼ 1030 G cm3 .

Some of neutron stars are the spinning super-magnetized
neutron stars created by supernova explosions.

The rotation of such stars called magnetars is slowing

down so rapidly that a super-strong field,

B ∼ 1015 G ,

could provide so fast braking.

For a magnetar

m ∼ 1033 G cm3 .

Exercise 8.3. Show that, prior to a solar flare, the mag-
netic energy density in the corona is of about three orders

of magnitude greater than any of the other types.
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Exercise 8.4. By using the method of conform map-
ping, determine the shape of a magnetic cavity, magne-

tosphere, created by a plane dipole inside a perfectly con-
ducting uniform plasma with a gas pressure p0.

Answer.

The conditions to be satisfied along the boundary S of
the magnetic cavity G are equality of magnetic and gas

pressure,

B2

8π S

= p0 = const , (8.51)

and tangency of the magnetic field,

B · n
S

= 0 . (8.52)

Condition (8.52) means that

ReF (z) = A (x, y) = const , (8.53)

where a complex potential F (z) is an analytic function
within the region G except at the point z = 0 of the

dipole m.

Let us assume that a conform transformation w = w(z)

maps the region G onto the circle

|w | ≤ 1

in an auxiliary complex plane

w = u+ iv
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so that the point z = 0 goes into the centre of the circle
(Fig 8.8).

u

v
i S

1 0.15

x/L

y/L
0.1

A=

A=-

A=-A=

0

1

S

1

2

0.1

i

1

m

(a) (b)

Figure 8.8: The field lines of a dipole m inside: (a) the unit
circle in the plane w, (b) the cavity in a plasma of constant

pressure.

The boundary |w | = 1 is the field line S ′ of the solution

in the plane w, which we construct:

F (w) =

(
w − 1

w

)
. (8.54)

Note that we have used only the boundary condition (8.52).

The other boundary condition (8.51) allows us to find an

unknown transformation w = w(z).

The field lines are shown in Fig. 8.8b.

This solution can be used in the zero-order approximation
to analyze properties of plasma flows near collapsing or ex-

ploding astrophysical objects with strong magnetic fields.
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Exercise 8.5 To estimate a large-scale magnetic field in
the corona of an accretion disk, we have to find the struc-

ture of the field inside an open magnetosphere created by
a dipole field of a star and a regular field generated by the

disk (Somov et al., 2003).

B

m

x

y
S u

S d

ψ

Γ

Γ

z

G

l

r

p
0

Figure 8.9: A model of the star magnetosphere with an accre-

tion disk; Γl and Γr are the cross sections of the disk. Su

and Sd together with Γl and Γr constitute the boundary of

the domain G in the plane z.

Consider a 2D problem, demonstrated by Fig. 8.9, on

the shape of a magnetic cavity and the shape of the accre-
tion disk under assumption that this cavity, i.e. the magne-

tosphere, is surrounded by a perfectly conducting uniform
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plasma with a gas pressure p0.

Discuss a way to solve the problem by using the method
of conform mapping.
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Chapter 9

MHD Waves in
Astrophysical Plasma

There are four different modes of MHD waves in

an ideal plasma with magnetic field.

They can create turbulence, accelerate particles
and produce a lot of interesting effects in astro-

physical plasmas.

9.1 The dispersion equation in ideal MHD

Small disturbances in a conducting medium with a mag-

netic field propagate as waves, their properties being dif-
ferent from those of the sound waves in a gas or electro-

magnetic waves in a vacuum.

First, the conducting medium with a magnetic field has

a characteristic anisotropy: the wave propagation velocity
depends upon the direction of propagation relative to the

field.

237
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Second, as a result of the interplay of electromagnetic
and hydrodynamic phenomena, the waves in MHD are gen-

erally neither longitudinal nor transversal.

The study of the small-amplitude waves, apart from be-

ing interesting in itself, has a direct bearing on the analy-
sis of large-amplitude waves, in particular shock waves

and other discontinuous flows, including reconnecting cur-
rent layers.

Initially we shall study the possible types of small-ampli-
tude waves in ideal MHD.

Suppose a plasma in the initial stationary state is sub-
jected to a small perturbation: velocity v0, field B0, den-
sity ρ0, pressure p0 and entropy s0 acquire some small de-

viations v ′, B ′, ρ ′, p ′ and s ′:

v = v0 + v ′ , B = B0 + B ′ ,
ρ = ρ0 + ρ ′ , p = p0 + p ′ , s = s0 + s ′ .

(9.1)

The initial state is assumed to be a uniform flow of an

homogeneous medium in a constant magnetic field:

v0 = const , B0 = const ,
ρ0 = const , p0 = const , s0 = const .

(9.2)

The latter simplification can be ignored, i.e. we may
study waves in inhomogeneous media, the coefficients in

linearized equations being dependent upon the coordinates.
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For the sake of simplicity we restrict our consideration
to the case (9.2).

It is convenient to introduce the following designations:

u =
B0√
4πρ0

, u ′ =
B ′

√
4πρ0

. (9.3)

Let us linearize the set of MHD equations for an ideal

medium.

We substitute (9.1)–(9.3) in Equations (6.56), neglecting
the products of small quantities.

Hereafter the subscript ‘0’ will be omitted.

We shall get the following set of linear differential

equations for the primed quantities characterizing small
perturbations:

∂ u ′ / ∂t+ (v · ∇)u ′ = (u · ∇)v ′ − u div v ′ ,
div u ′ = 0 ,

∂ v ′ / ∂t+ (v · ∇)v ′ =

= − ρ−1 ∇ ( p ′ + ρu · u ′ ) + (u · ∇)u ′ ,
∂ρ ′ / ∂t + (v · ∇) ρ ′ = − ρ div v ′ , (9.4)

∂s ′ / ∂t + (v · ∇) s ′ = 0 ,

p ′ = (∂p / ∂ρ)s ρ
′ + (∂p / ∂s)ρ s

′ .

The latter equation is the linearized equation of state.

We rewrite it as follows:

p ′ = V 2
s ρ

′ + b s ′. (9.5)
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Here
Vs = (∂p / ∂ρ) 1/2

s (9.6)

is the velocity of sound in a medium without a magnetic
field, the coefficient

b = (∂p/∂s)ρ .

The set of Equations (9.4) is that of linear differential

equations with constant coefficients.

That is why we seek a solution in the form of plane
waves

f ′(r, t) ∼ exp [ i (k · r − ωt) ] , (9.7)

where ω is the wave frequency and k is the wave vector.

An arbitrary disturbance can be expanded into such waves

by means of a Fourier transform.

As this takes place, the set of Equations (9.4) is reduced
to the following set of linear algebraic equations:

(ω − k · v)u ′ + (k · u)v ′ − u (k · v ′) = 0 ,
k · u ′ = 0 ,

(ω − k · v)v ′ + (k · u)u ′ − ρ−1 ( p ′ + ρu · u ′ )k = 0 ,
(ω − k · v) ρ ′ − ρ (k · v ′) = 0 ,

(ω − k · v) s ′ = 0 ,
p ′ − V 2

s ρ ′ − b s ′ = 0 .
(9.8)

The quantities k and ω are assumed to be known from

the initial conditions.
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The unknown terms are the primed ones.

With respect to these the set of Equations (9.8) is closed,
linear and homogeneous (the right-hand sides equal zero).

For this set to have non-trivial solutions, its determinant
must be equal to zero.

It is convenient to use the frequency

ω0 = ω − k · v , (9.9)

i.e. the frequency in a frame of reference moving with the
plasma.

Setting the determinant equal to zero, we get the follow-
ing dispersion equation

ω 2
0

[
ω 2

0 − (k · u)2
]×

× [
ω 4

0 − k2
(
V 2
s + u2

)
ω 2

0 + k2V 2
s (k · u)2

]
= 0 . (9.10)

It defines four values of ω 2
0 .

Four different modes of waves are defined, each of

them having its own velocity of propagation with respect
to the plasma

Vph =
ω0

k
. (9.11)

This is the phase velocity of a wave.

It is distinguished from the group velocity

Vgr =
d ω0

dk
. (9.12)
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Let us consider the properties of the waves defined by
Equation (9.10).

9.2 Small-amplitude waves in ideal MHD

9.2.1 Entropy waves

The first root of (9.10)

ω0 = ω − k · v = 0 (9.13)

corresponds to the perturbation which is immobile with
respect to the medium:

Vph = 0 .

If the medium is moving, the disturbance is carried with it.

Substituting (9.13) in (9.8), we obtain the following equa-
tions:

(k · u)u ′ = 0 , (k · u)v ′ = 0 ,

p ′ + ρu · u ′ = 0 , p ′ − V 2
s ρ

′ − b s ′ = 0 .

Since generally k · u �= 0, the velocity, magnetic field and

gas pressure are undisturbed:

v ′ = 0 , u ′ = 0 , p ′ = 0 . (9.14)

The only disturbed quantities are the density and

entropy related by the condition
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ρ ′ = − b

V 2
s

s ′ .

(9.15)

This is why these disturbances are called the entropy waves.

They are well known in hydrodynamics.

The meaning of an entropy wave is that regions contain-

ing hotter but more rarefied plasma can exist in a plasma
flow.

The entropy waves are only arbitrarily termed waves,

since their velocity of propagation with respect to the me-
dium is zero.

Nevertheless the entropy waves must be taken into ac-

count together with the real waves in such cases as the study
of shock waves behavior under small perturbations.

Blokhintsev (1945) has considered the passage of small

perturbations through a shock in ordinary hydrodynamics.

He came to the conclusion that

the entropy wave must be taken into account in
order to match the linearized solutions at the shock
front.

In MHD, the entropy waves are important in the problem
of evolutionarity of the MHD discontinuities and recon-

necting current layers.

The entropy waves can be principally essential in astro-

physical plasma where plasma motions are not slow, for
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example in helioseismology of the corona of the Sun or
another star.

Meanwhile the entropy waves are generally (i.e., with the
inclusion of dissipative processes) believed to be damped

ones.

For this reason it is commonly assumed that the entropy
waves may be ignored, for example, in the problem of solar

coronal heating.

However we shall consider the stability problem for MHD
perturbations in an optically thin, perfectly conducting plas-

ma with a cosmic abundance of elements.

It appears that the entropy waves can grow exponen-
tially, for example, in stellar coronae with the proper al-

lowance for radiative losses of energy.

9.2.2 Alfvén waves

The second root of the dispersion equation,

ω 2
0 = (k · u)2 or ω0 = ± k · u , (9.16)

corresponds to waves with the phase velocity

V
A

= ± B√
4πρ

cos θ .

(9.17)

Here θ is the angle between the direction of wave propaga-

tion k/k and the ambient field vector B0 (Fig. 9.1).
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In formula (9.17) the value B = | B0 | and ρ = ρ0. These
are the Alfvén waves.

By substituting (9.16) in the algebraic Equations (9.8)

we check that the thermodynamic characteristics of the
medium remain unchanged

ρ ′ = 0 , p ′ = 0 , s ′ = 0 , (9.18)

while the perturbations of the velocity and magnetic field
are subject to the conditions

v ′ = ∓u ′ , u · u ′ = 0 , k · u ′ = 0 . (9.19)

Thus the Alfvén waves are the displacements of plasma
together with the magnetic field frozen into it.

They are transversal with respect to both the field di-

rection and the wave vector as shown in Fig. 9.1.

θ

k

B

B

0

B 0

y

x

z

Figure 9.1: The transversal displacements of plasma and mag-

netic field in the Alfvén wave.
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The Alfvén waves have no analogue in hydrodynamics.

They are specific to MHD and were called the magneto-
hydrodynamic waves.

This term emphasized that they do not change the den-
sity of a medium.

The fact that the Alfvén waves are transversal signifies
that

a conducting plasma in a magnetic field has a char-
acteristic elasticity resembling that of stretched
strings under tension.

The magnetic tension force is one of the characteris-

tics of MHD.

According to (9.19), the perturbed quantities are related
by an energy equipartition:

1

2
ρ (v ′ )2 =

1

8π
(B ′ )2

. (9.20)

Let us note also that

the energy of Alfvén waves, much like the energy of

oscillations in a stretched string, propagates along
the field lines only.

Unlike the phase velocity, the group velocity of the

Alfvén waves (9.12)

Vgr = ± B√
4πρ

(9.21)

is directed strictly along the magnetic field.
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In low density plasmas with a strong field, like the solar
corona, the Alfvén speed V

A
can approach the light speed c

(Exercise 9.3).

9.2.3 Magnetoacoustic waves

Equation (9.10) has two other branches – two types of waves
defined by a bi-square equation

ω 4
0 − k2

(
u2 + V 2

s

)
ω 2

0 + k2 V 2
s (k · u)2 = 0 . (9.22)

Its solutions are two values of ω0, which differ in absolute
magnitude, corresponding to two different waves with

the phase velocities V+ and V− which are equal to

V 2
± =

1

2

[
u2 + V 2

s ±
√

(u2 + V 2
s )2 − 4u2V 2

s cos2 θ

]
.

(9.23)

These waves are called the fast (+) and the slow (−) mag-

netoacoustic waves, respectively.

The point is that the entropy does not change in such
waves

s′ = 0 , (9.24)

as is also the case in a sound wave.

Perturbations of the other quantities can be expressed in

terms of the density perturbation
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p ′ = V 2
s ρ

′ , (9.25)

v ′ = − ω0

ρ k2


k2(k · u)u − ω 2

0 k

ω 2
0 − (k · u)2


 ρ ′ , (9.26)

u ′ =
ω 2

0

ρ k2


k2 u − (k · u)k

ω 2
0 − (k · u)2


 ρ ′ . (9.27)

Formulae (9.26) and (9.27) show that the magnetoacoustic

waves are neither longitudinal nor transversal.

Perturbations of the velocity and magnetic field, v ′ and
u ′, as differentiated from the Alfvén wave, lie in the (k,B0)
plane in Fig. 9.1.

They have components both in the direction of the wave

propagation k/k and in the perpendicular direction.

The perturbation of magnetic pressure B2/8π may be

written in the form

p ′
m =


V 2

±
V 2
s

− 1


 p ′ . (9.28)

Therefore for the fast wave, by virtue of that V 2
+ > V 2

s , the
perturbation of magnetic pressure p ′

m is of the same sign as

that of gas pressure p ′.
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The magnetic pressure and the gas pressure are
added in the fast magnetoacoustic wave. The wave

propagates faster, since the effective elasticity of
the plasma is greater.

A different situation arises with a slow magnetoacoustic

wave.

In this case V 2
− < V 2

s and p ′
m is opposite in sign to p ′.

Magnetic and gas pressure deviations partially compen-
sate each other.

That is why such a slow wave propagates slowly.

9.2.4 The phase velocity diagram

The dependence of the wave velocities on the angle θ be-
tween the undisturbed field B0 and the wave vector k is

demonstrated in a polar diagram – the phase velocity dia-
gram.

In Fig. 9.2, the radius-vector length from the origin
of the coordinates to a curve is proportional to the corre-

sponding phase velocity.

The horizontal axis corresponds to the direction of the

magnetic field.

As θ → 0, the fast magnetoacoustic wave V+ transforms

to the usual sound one Vs if

Vs > V
A ‖ =

B√
4πρ

≡ u
A

(9.29)
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Figure 9.2: The phase velocities of MHD waves versus the
angle θ for the two cases: (a) u

A
< Vs and (b) u

A
> Vs.

in Fig. 9.2a or to the Alfvén wave if Vs < u
A

in Fig. 9.2b.

For θ → π/2, the propagation velocities of the Alfvén
and slow waves approach zero.

As this takes place, both waves convert to the weak

tangential discontinuity in which disturbances of velocity
and magnetic field are parallel to the front plane.

As θ → π/2, the fast magnetoacoustic wave velocity
tends to

V⊥ =
√
u2

A
+ V 2

s . (9.30)

In the strong field limit (V 2
A ‖ � V 2

s ) the diagram for the
fast magnetoacoustic wave becomes practically isotropic as

shown in Fig. 9.3.
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Figure 9.3: The phase velocity

diagram for the MHD waves
in an ideal plasma with a

strong magnetic field.

Such a wave may be called the ‘magnetic sound’ wave
since its phase velocity

V+ ≈ V
A ‖ ≡ u

A

is almost independent of the angle θ.

Generally the sound speed is the minimum veloc-

ity of disturbance propagation in ordinary hydro-
dynamics. By contrast, there is no minimum ve-
locity in MHD.

This property is of fundamental importance in study of
the principal questions related to discontinuous flows
of astrophysical plasma.

The first of these questions is what kinds of discontinu-
ities can really exist?

MHD waves produce a lot of effects in astrophysical
plasma. The fast magnetoacoustic wave turbulence can

presumably accelerate electrons in solar flares.
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The heavy ions observed in interplanetary space after
impulsive flares can result from stochastic acceleration

by the cascading Alfvén wave turbulence.

9.3 Dissipation of Alfvén waves

9.3.1 Small damping of Alfvén waves

We shall start by treating a plane Alfvén wave propagating

along a uniform field B0; so the angle θ = 0 in Fig. 9.1.

Perturbations of the magnetic field and the velocity are
parallel to the z axis:

B ′ = { 0, 0, b (t, y) } , v ′ = { 0, 0, v (t, y) } .

In general, the damping effects for such a wave are de-
termined by viscosity and conductivity.

Let us consider, first, only the uniform finite conduc-

tivity σ.

We obtain the extended equation of the wave type with

a dissipative term:

∂2b

∂t2
= u2

A

∂2b

∂y2 + νm
∂3b

∂2y ∂t
. (9.31)

Here u
A

= V
A ‖ and νm is the magnetic diffusivity.

In the case of infinite conductivity, (9.31) is reduced

to the wave equation.

Let us suppose that the conductivity is finite.
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We suppose further that the small perturbations are func-
tions of t and y only:

b (t, y) = b0 exp ( iωt+ αy) ,

v (t, y) = v0 exp ( iωt+ αy) . (9.32)

Here ω, α, b0, and v0 are constants, all of which except ω
may be complex numbers.

Substituting (9.32) in (9.31) gives us the dispersion equa-
tion

ω2 +
(
u2

A
+ i νm ω

)
α2 = 0 (9.33)

or

α = ± i
ω

u
A


1 + i

νm ω

u2
A


−1/2

. (9.34)

For small damping

α = ±

νm ω

2

2 u3
A

+ i
ω

u
A


 . (9.35)

The distance ld in which the amplitude of the wave is

reduced to 1/e is the inverse value of the real part of α.

Thus we have

ld =
2 u3

A

νm ω2 =
8πσu3

A

ω2c2
=

2σu
A

πc2
λ2, (9.36)

where

λ = 2π u
A
/ω
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is the wave length.

The short waves suffer more damping than do the
long waves.

Since we treat the dissipative effects as small, the expres-
sion (9.36) is valid if λ� ld.

Thus we write

b (t, y) = b0 exp

(
− y

ld

)
exp


 iω


t− y

u
A




 , (9.37)

v (t, y) = v0 exp

(
− y

ld

)
exp


 iω


t− y

u
A




 (9.38)

with

v0 = u
A

b0
B0


1 − i

νm ω

2 u2
A


 . (9.39)

The imaginary part indicates the phase shift of the veloc-

ity v in relation to the magnetic perturbation field b.

Therefore

v (t, y) = u
A

b0
B0

exp

(
− y

ld

)
exp


i


ω


t− y

u
A


− ϕ




 ,

(9.40)

where

ϕ =
νm ω

2 u2
A

=
ω c2

8πσu2
A

=
ω c2ρ

2σB 2
0
.
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So the existence of Alfvén waves requires an external
field B0 enclosed between two limits.

The magnetic field should be strong enough to make
the damping effects small (ld � λ) but yet weak
enough to keep the Alfvén speed well below the

velocity of light,

because otherwise the wave becomes an ordinary electro-

magnetic wave.

In optical and radio frequencies it is not possible to sat-
isfy both conditions.

However longer periods often observed in astrophysical

plasma leave a wide range between both limits so that
Alfvén waves may easily exist.

One of favorable sites for excitation of MHD waves is the
solar atmosphere.

The chromosphere and corona are highly inhomogeneous
media supporting a variety of filamentary structures in the

form of arches and loops.

The foot points of these structures are anchored in the
poles of the photospheric magnetic fields.

They undergo a continuous twisting and turning due to

convective motions in the subphotospheric layers.

This twisting and turning excite MHD waves.

The waves then dissipate and heat the corona.

Presumably this energy is enough to explain coronal heat-

ing.
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9.3.2 Slightly damped MHD waves

The damping effects due to a finite conductivity σ and
due to a kinematic viscosity ν = η/ρ can be included in a
general treatment of MHD waves of small amplitudes.

Well developed waves are the waves that travel at

least a few wave lengths before they lose a considerable
fraction of their energy if the two dimensionless parameters

p ν =
ω ν

c2
and p νm

=
ω νm

c2
, (9.41)

that characterize two dissipative processes, are much smaller
than the two small dimensionless parameters

p s =
V 2
s

c2
and p

A
=
u2

A

c2
, (9.42)

that characterize the propagation speeds of undamped waves.

For Alfvén wave, we find the damping length, i.e.

the distance ld and the damping time τd :

ld =
u3

A

ω2 (ν + νm)
, (9.43)

τd =
ld
u

A

=
u2

A

ω2 (ν + νm)
. (9.44)

This shows that, if dissipative effects are small,

the relative importance of resistivity and viscosity
as damping effects in Alfvén wave is independent of
frequency ω.
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So the high frequency waves have a short damping length
and time.

The magnetoacoustic waves, being compressional, ha-
ve an additional contribution to their damping rate from
compressibility of the plasma.

9.4 Stability of plasma-compressing waves

Let us consider the stability problem for small MHD pertur-
bations in an optically thin plasma with a cosmic abun-

dance of elements.

9.4.1 Derivation of the dispersion equation

Disregarding the damping effects of ordinary and magnetic
viscosities, considered above, let us write the set of MHD

equations as

dρ

dt
+ ρ div v = 0 ,

ρ
dv

dt
+ ∇


p+

B2

8π


− (B · ∇)B

1

4π
= 0 ,

ρ T
ds

dt
=

1

γ − 1

dp

dt
− γ

γ − 1

p

ρ

dρ

dt
=

= ∇‖ ·
(
κ ‖∇‖T

)
+ ∇⊥ · (κ⊥∇⊥T ) −L(ρ, T ) + H , (9.45)

dB

dt
+ B div v − (B · ∇)v = 0 ,
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divB = 0 ,

p =
R

µ
ρT .

Here

s is the entropy per unit mass,

γ = cp/cv is the ratio of the specific heats at constant
pressure and constant volume, and

L is the rate of energy losses through the optically thin

plasma radiation per unit volume measured in erg s−1 cm−3

(see formula (6.22) and Fig. 6.1).

The heat conduction along (κ ‖) and across (κ⊥) the field
is determined, respectively, by electrons and, for a com-

pletely ionized hydrogen plasma, by protons.

The existence of a steady state in such a plasma im-

plies the presence of a steady uniform heating source whose
power H is equal to the rate of radiative energy losses.

Let us represent all of the physical variables as

f(r, t) = f 0 + f ′(r, t) .

Since the medium and the field are assumed to be uni-
form, we seek a solution in the form of plane waves

f ′(r, t) = f1 exp i (k · r− ωt) . (9.46)

We obtain a set of linear algebraic equations with con-
stant coefficients:

ωρ 1 − ρ 0 (k · v1) = 0 , (9.47)
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ωρ 0 v1 − k

(
p 1 +

B0 ·B1

4π

)
+ (k ·B0)

B1

4π
= 0 , (9.48)

(−i)ω
γ − 1

(
p 1 − c 2

s ρ 1
)
+Qρ ρ 1 +Q

T
T1 + K T1 = 0 , (9.49)

ωB1 −B0 (k · v1) + (k ·B0)v1 = 0 , (9.50)

(k · B1 ) = 0 , (9.51)

p 1

p 0
=
ρ 1

ρ 0
+
T1

T0
. (9.52)

Here c 2
s = γ p0/ρ0 is the sound speed squared; the coeffi-

cients

Qρ =
∂L
∂ρ

∣∣∣∣∣
T

, Q
T

=
∂L
∂T

∣∣∣∣∣
ρ

(9.53)

and

K = κ ‖ k 2
‖ + κ⊥ k 2

⊥ (9.54)

characterize the plasma emissivity and anisotropic heat
conduction.

The dispersion equation can be written as

(k · v1)

[
−ω

4π

k 2 ( Σ k 2 + ωρ 0 ) + B 2
0 +

Σ

ωρ 0
(k ·B0)

2
]

=

= 0 , (9.55)

where the function

Σ (ω) = (9.56)

=
(−i)ω ρ 0 c

2
s − (γ − 1) ρ 2

0Qρ + (γ − 1)T0 (Q
T

+ K)

ω [ i ωρ 0 − µ (γ − 1) (Q
T

+ K)/R ]
ρ0 .
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9.4.2 The instability of entropy waves

In strong magnetic field, the entropy waves grow exponen-
tially if (Somov et al., 2007):

Q
T

+ K < 0 . (9.57)

Since the coefficient K > 0 by definition, the heat con-

duction has a stabilizing effect on the entropy waves.

It thus follows that the instability can manifest itself only
at negative values of the derivative of the rate of radiative

losses,
L � −n2 q(T ) , erg s−1 cm−3 ,

(see the function q(T ) in Fig. 6.1) with respect to the tem-
perature.

The logarithmic derivative of the cooling function,

α(T ) = d ln q(T ) / d lnT ,

is shown in Fig. 9.4.

Figure 9.4: Logarithmic
derivative of the cool-

ing function q with re-
spect to the tempera-
ture.

Now we return to the general case.
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The exact solutions of the dispersion equation show that
there are temperature ranges in which the entropy waves

grow exponentially.

The growth time τ is plotted against the temperature T
in Fig. 9.5 for three fixed plasma densities: n1 = 109, n2 =
1010, n3 = 1011 cm−3.

Figure 9.5: The growth

time for entropy wave
instability vs. temper-

ature at fixed plasma
densities.

A weak dependence on the magnetic field enters into the
calculations with formulae for the heat conductivity

κ ‖ � 9 × 10−7 T 5/2 ,
κ⊥
κ ‖

� 2 × 10−11 n2

T 3B2 ,

where the heat conductivity is measured in CGS units and

the field B is measured in Gauss.

The calculations were performed for a wide range of field

strengths, B = (10−1 − 104) G.

This manifested itself in Fig. 9.5 as a slight “stratifica-
tion” of the curves for the instability growth time τ at the

plasma densities n2 = 1010 and n3 = 1011 cm−3.
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Here we took the angle θ to be π/4 and chose the wave-
length to be λ = 108 cm.

Figure 9.6: The growth
time as a function

of temperature and
the wavelength λ in-

dicated as a num-
ber near the curves

(the unit of length is
108 cm).

The wavelength dependence of the growth time τ is shown

in Fig. 9.6.

The magnetic field strength is B0 = 1000 G.

The growth time for entropy waves in stellar coro-
nae can vary over a wide range: from tenths of a
second to tens minutes.

The higher the plasma density, the faster the instability

growth.

Two “main” minima (regions of strong instability) are
present at T1 ≈ 2 × 104 K and T2 ≈ 3 × 105 K.

The instability mechanism is simple.

In the temperature regions of a rapid decrease in the

radiative loss function with temperature, a small decrease in
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temperature causes a large increase in the rate of radiative
energy losses.

Conversely a small increase in temperature is accompa-

nied by a decrease in the rate of radiative plasma cooling.

As a result, small perturbations grow rapidly.

Clearly, in general,

the entropy waves can be unstable in any compress-
ible optically thin medium whose radiative cool-
ing depends on the temperature in the form of one

or more sharp maxima.

In astrophysical and laboratory plasmas, these maxima

are produced by the radiation of a small admixture of heavy
ions.

However, in contrast to the astrophysical plasma, the
approximation of an ideal conductivity is not applicable in

the laboratory plasma.

The Joule heating becomes the dominant heating mech-

anism.

The dispersion equation includes the derivative with re-
spect to the temperature not only the bulk radiation inten-
sity but also of the plasma conductivity.

This leads to instabilities and complex dynamics of plas-

ma, for example, in emitting Z-pinches (Imshennik and
Bobrova, 1997).
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9.4.3 The damping of magnetoacoustic waves

In contrast to the entropy waves, the magnetoacoustic waves
are damped.

At the assumed physical model parameters consistent

with our views of the solar and stellar coronae, the damping
decrement is

d =
Im ω

Re ω
< 0 .

For fast magnetoacoustic waves, Fig. 9.7 presents the
solutions to the dispersion equation at the same density,

angle θ and the magnetic field as those in Fig. 9.6.

The damping decrement d in the temperature range 104 ≤
T ≤ 2 × 106 K is very small: −d < 10−6.

Figure 9.7: Damp-
ing decrement of fast
waves as a function of

the temperature and
density for the same

parameters as those
in Fig. 9.6.

For slow magnetoacoustic waves, the damping decre-

ment is several orders of magnitude larger (Fig. 9.8).

At T2 ≈ 3 × 105 K, the damping decrement lies within

the range ∼ 0.05 < −d < 0.16.
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This corresponds to a decrease in the wave amplitude by
a factor of e in a time τ equal to ∼ 3−1 wave periods τω =

2π/Reω .

As the temperature decreases to T ≈ T1 ≈ 2 × 104 K,
the damping decrement increases to values of the order of

several seconds.

Thus the damping decrement for slow waves is 4–6

orders of magnitude larger than that for fast waves.

What is the cause of such a large difference? –

In a fast magnetoacoustic wave, the sign of the change

in magnetic pressure is the same as that of the change in
gas pressure, i.e., the magnetic and gas pressures add up.

Where the plasma density increases, the magnetic pres-
sure also increases, preventing the plasma compression.

The effective plasma elasticity for a fast wave is larger.

The picture is different in a slow wave.

In this case, the changes in magnetic and gas pressures
have opposite signs.

Where the plasma density increases, the magnetic

field decreases, without preventing the plasma from
compressing. As a result, the radiative energy losses

grow faster than that of fast waves.

For this reason, the radiative damping of slow waves is

much stronger than that of fast waves.
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Figure 9.8: Damping
decrement of slow

magnetoacoustic
waves.

One would think that slow waves resemble more closely
the ordinary sound and that the excitation of thermal in-

stability might be expected for them (Field, 1965).

Instead, the calculations demonstrate only rapid damp-

ing of slow waves.

However there is no contradiction in this fact.

The point is that the magnetoacoustic waves are neither
longitudinal nor transverse.

Moreover, the longitudinal components are not indepen-
dent of the transverse ones.

For this reason, the stabilizing effect of a strong mag-
netic field dominates over the excitation of oscillations by
thermal instability.

Of course, the damping of oscillations due to the radia-
tive energy losses is present and turns out to be strong for

slow waves.



9.5. Oscillation in the Solar Corona 267

9.5 MHD oscillations in the solar corona

In the corona, the low-frequency MHD oscillations can be
studied well almost at all wavelengths.

Most of these oscillations are commonly interpreted as

standing oscillations of various types in coronal magnetic
loops.

Meanwhile the oscillations of coronal loops observed from

TRACE in EUV are, as a rule, damped rapidly.

The ratio of the characteristic damping time τ d to the
oscillation period τω is

τ d/τω = 1.8 ± 0.8

in the range of periods

τω = 317 ± 114 s .

Such rapid damping of the MHD oscillations is difficult
to explain.

The current models of damping mechanisms consider
the following factors:

(a) nonideality of the solar plasma, i.e. the presence of

electric resistivity, viscosity, and heat conduction and
radiative losses of energy;

(b) the escape of waves from the magnetic loop through

its side boundaries into corona and through the loop foot-
points into the chromosphere;

(c) phase mixing in regions where the magnetic field

and the plasma are nonuniform;
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(d) resonant absorption.

The first two factors are believed to be negligible and the
last two factors are believed to be the main ones.

Since the coronal oscillations are damped rapidly, the

question of their excitation mechanism also arises.

If the oscillations grew rapidly, there would be no prob-
lem: low-amplitude perturbations would sufficient.

However the formal number of oscillations is, in av-

erage,

Nobs =
τd
τω

≈ 2 . (9.58)

The current models just postulate instantaneous exci-
tation of large-amplitude MHD oscillations in an isolated

magnetic flux tube.

Why rapidly damped oscillations are seen best in a small

group of loops precisely in EUV radiation is probably a
key question.

Contrary to popular belief, the answer may be simple.

Where the rate of energy losses via radiation is at
a maximum (at T ∼ 105 K), the brightness of the

oscillating loops is at a maximum (in EUV) and the
oscillations are damped most rapidly.

The calculations presented above show that the predicted

number of oscillations for slow magnetoacoustic waves is

N th =
τ

τω
≈ 1 − 3 (9.59)
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in the range of temperatures corresponding to the second
main maximum, i.e. T2 ≈ 3 × 105 K.

Moreover, at the plasma density n1 = 109 cm−3, the
damping decrement remains in the same range as the tem-

perature decreases to T ≈ T1 ≈ 2 × 104 K.

For the 11 events with oscillating coronal loops that were
studied in detail by Aschwanden et al. (2003), the plasma

density inside the loops was, on average, n int = (1.4±0.7)×
109 cm−3.

Consequently

n int ≈ n1

and

N th ≈ Nobs .

Thus we suggest that

the observed oscillations are a manifestation of the
rapid damping of slow magnetoacoustic waves due
to the radiative energy losses in the corona.

The excitation mechanism of magnetoacoustic waves
should be studied further.

The rapid growth of entropy waves calculated above

must probably be taken into account to explain this phe-
nomenon.

Clearly, we cannot ignore the fast plasma flows (par-

ticularly those from reconnecting current layers) and,
hence, the growing entropy waves transferred by these flows

in the corona.


